IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v209y2025ics1364032124008657.html
   My bibliography  Save this article

Exploring complementary effects of solar and wind power generation

Author

Listed:
  • Melo, Gustavo de Andrade
  • Cyrino Oliveira, Fernando Luiz
  • Maçaira, Paula Medina
  • Meira, Erick

Abstract

The increased participation of variable renewable energy sources (VREs) in electrical matrices worldwide is essential for achieving several United Nations Sustainable Development Goals (SDGs), such as SDGs 7 (Affordable and Clean Energy) and 13 (Climate Action). However, it brings several challenges to the planning and operation of power systems, mainly due to the intermittency of VREs. In this context, the complementary effects between different intermittent resources have garnered growing attention in the literature since such properties offer a collective capability to capture the stochastic nature of intermittent power generation when simulating scenarios. This work proposes a stochastic simulation model of renewable energy generation that explores several complementary effects between wind and photovoltaic resources in different Brazilian locations. The approach considers calculating energy generation states to simultaneously represent the generation of multiple renewable sources and using probability transition matrices based on historical data. The synthetic time series are subsequently assessed using statistical methods that indicate good adherence of the generated scenarios to most stylized facts of the historical series.

Suggested Citation

  • Melo, Gustavo de Andrade & Cyrino Oliveira, Fernando Luiz & Maçaira, Paula Medina & Meira, Erick, 2025. "Exploring complementary effects of solar and wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008657
    DOI: 10.1016/j.rser.2024.115139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124008657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    3. de Jong, Pieter & Dargaville, Roger & Silver, Jeremy & Utembe, Steven & Kiperstok, Asher & Torres, Ednildo Andrade, 2017. "Forecasting high proportions of wind energy supplying the Brazilian Northeast electricity grid," Applied Energy, Elsevier, vol. 195(C), pages 538-555.
    4. Alipour, Mohammadali & Aghaei, Jamshid & Norouzi, Mohammadali & Niknam, Taher & Hashemi, Sattar & Lehtonen, Matti, 2020. "A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration," Energy, Elsevier, vol. 205(C).
    5. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    6. Ferreira, Pedro Guilherme Costa & Oliveira, Fernando Luiz Cyrino & Souza, Reinaldo Castro, 2015. "The stochastic effects on the Brazilian Electrical Sector," Energy Economics, Elsevier, vol. 49(C), pages 328-335.
    7. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    8. Paula Medina Maçaira & Yasmin Monteiro Cyrillo & Fernando Luiz Cyrino Oliveira & Reinaldo Castro Souza, 2019. "Including Wind Power Generation in Brazil’s Long-Term Optimization Model for Energy Planning," Energies, MDPI, vol. 12(5), pages 1-20, March.
    9. Ferraz de Andrade Santos, José Alexandre & de Jong, Pieter & Alves da Costa, Caiuby & Torres, Ednildo Andrade, 2020. "Combining wind and solar energy sources: Potential for hybrid power generation in Brazil," Utilities Policy, Elsevier, vol. 67(C).
    10. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    11. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Miao, Shuwei & Xie, Kaigui & Yang, Hejun & Tai, Heng-Ming & Hu, Bo, 2017. "A Markovian wind farm generation model and its application to adequacy assessment," Renewable Energy, Elsevier, vol. 113(C), pages 1447-1461.
    14. Costoya, X. & deCastro, M. & Carvalho, D. & Arguilé-Pérez, B. & Gómez-Gesteira, M., 2022. "Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Sakki, G.K. & Tsoukalas, I. & Kossieris, P. & Makropoulos, C. & Efstratiadis, A., 2022. "Stochastic simulation-optimization framework for the design and assessment of renewable energy systems under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    17. Souza, Reinaldo Castro & Marcato, André Luı´s Marques & Dias, Bruno Henriques & Oliveira, Fernando Luiz Cyrino, 2012. "Optimal operation of hydrothermal systems with Hydrological Scenario Generation through Bootstrap and Periodic Autoregressive Models," European Journal of Operational Research, Elsevier, vol. 222(3), pages 606-615.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grothe, Oliver & Kächele, Fabian & Wälde, Mira, 2025. "High-resolution working layouts and time series for renewable energy generation in Europe," Renewable Energy, Elsevier, vol. 239(C).
    2. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    3. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Huxley, O.T. & Taylor, J. & Everard, A. & Briggs, J. & Tilley, K. & Harwood, J. & Buckley, A., 2022. "The uncertainties involved in measuring national solar photovoltaic electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    6. Rafael Araujo Couto & Paula Medina Maçaira Louro & Fernando Luiz Cyrino Oliveira, 2025. "Forecasting Wind Speed Using Climate Variables," Forecasting, MDPI, vol. 7(1), pages 1-23, March.
    7. Radu, David & Berger, Mathias & Dubois, Antoine & Fonteneau, Raphaël & Pandžić, Hrvoje & Dvorkin, Yury & Louveaux, Quentin & Ernst, Damien, 2022. "Assessing the impact of offshore wind siting strategies on the design of the European power system," Applied Energy, Elsevier, vol. 305(C).
    8. Ahn, Hyeunguk, 2024. "A framework for developing data-driven correction factors for solar PV systems," Energy, Elsevier, vol. 290(C).
    9. Zhang, Hengxu & Cao, Yongji & Zhang, Yi & Terzija, Vladimir, 2018. "Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data," Applied Energy, Elsevier, vol. 216(C), pages 172-182.
    10. Drücke, Jaqueline & Borsche, Michael & James, Paul & Kaspar, Frank & Pfeifroth, Uwe & Ahrens, Bodo & Trentmann, Jörg, 2021. "Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification," Renewable Energy, Elsevier, vol. 164(C), pages 1254-1266.
    11. Kim, Jimin & Obregon, Josue & Park, Hoonseok & Jung, Jae-Yoon, 2024. "Multi-step photovoltaic power forecasting using transformer and recurrent neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    12. Duca, Victor E.L.A. & Fonseca, Thaís C.O. & Cyrino Oliveira, Fernando L., 2021. "A generalized dynamical model for wind speed forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    13. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    14. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    15. Steinegger, Josef & Hammer, Andreas & Wallner, Stefan & Kienberger, Thomas, 2024. "Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks," Applied Energy, Elsevier, vol. 372(C).
    16. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    17. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    19. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    20. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.