IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i4p1817-1827.html
   My bibliography  Save this article

Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: A review

Author

Listed:
  • Liu, P.F.
  • Chu, J.K.
  • Hou, S.J.
  • Xu, P.
  • Zheng, J.Y.

Abstract

Composite high-pressure hydrogen storage vessel has been increasingly applied to the hydrogen fuel cell car. The design of a composite vessel involves various integrated parameters such as the progressive failure properties, the burst pressure and fatigue lifetime. The favorable combination of high reliability and practicability of the composite vessel is a challenging task from the beginning of design. This paper gives a comprehensive review on recent development of numerical simulation and optimization for the designed composite vessel. First, methods on damage modeling for predicting the failure properties and degradation mechanisms of the composite vessel are reviewed. Second, research on predicting the burst pressure and lifetime of the composite vessel is reviewed. The academic work on the damage modeling, progressive failure analysis and finite element implementation which explains the failure properties and stiffness degradation mechanisms of the composite vessel is summarized. Computational methods on the burst pressure, the strength reliability and lifetime of the composite vessel are also evaluated. Finally, ideal design which aims to lessen the weight of a composite vessel to the maximum extent under strength and stiffness constraints is commented. The optimization efficiency using different algorithms is also comparatively studied. The numerical simulation and optimization as important fundamental research constitute a design platform for the composite vessel. It deserves pointing out the lightweight design conception as a remarkable tendency that combines advanced numerical methods and manufacturing technique develops rapidly, commits to improving the reliability and practicability of the composite vessel. It is expected the lightweight design technique plays an increasingly important role in developing the composite vessel as their value is further highlighted.

Suggested Citation

  • Liu, P.F. & Chu, J.K. & Hou, S.J. & Xu, P. & Zheng, J.Y., 2012. "Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1817-1827.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:4:p:1817-1827
    DOI: 10.1016/j.rser.2012.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211200007X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Midilli, A. & Ay, M. & Dincer, I. & Rosen, M. A., 2005. "On hydrogen and hydrogen energy strategies II: future projections affecting global stability and unrest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(3), pages 273-287, June.
    2. Sobrino, Fernando Hernández & Monroy, Carlos Rodríguez & Pérez, José Luís Hernández, 2010. "Critical analysis on hydrogen as an alternative to fossil fuels and biofuels for vehicles in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 772-780, February.
    3. Zhou, Li, 2005. "Progress and problems in hydrogen storage methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 395-408, August.
    4. Kleijn, Rene & van der Voet, Ester, 2010. "Resource constraints in a hydrogen economy based on renewable energy sources: An exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2784-2795, December.
    5. Zoulias, E.I. & Glockner, R. & Lymberopoulos, N. & Tsoutsos, T. & Vosseler, I. & Gavalda, O. & Mydske, H.J. & Taylor, P., 2006. "Integration of hydrogen energy technologies in stand-alone power systems analysis of the current potential for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 432-462, October.
    6. Ruslan Medzhitov, 2007. "Recognition of microorganisms and activation of the immune response," Nature, Nature, vol. 449(7164), pages 819-826, October.
    7. Midilli, A. & Ay, M. & Dincer, I. & Rosen, M. A., 2005. "On hydrogen and hydrogen energy strategies: I: current status and needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(3), pages 255-271, June.
    8. Abbasi, Tasneem & Abbasi, S.A., 2011. "'Renewable' hydrogen: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3034-3040, August.
    9. Momirlan, M. & Veziroglu, T. N., 2002. "Current status of hydrogen energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 141-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fayaz, H. & Saidur, R. & Razali, N. & Anuar, F.S. & Saleman, A.R. & Islam, M.R., 2012. "An overview of hydrogen as a vehicle fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5511-5528.
    2. Yan, Yan & Zhang, Jiaqiao & Li, Guangzhao & Zhou, Weihao & Ni, Zhonghua, 2024. "Review on linerless type V cryo-compressed hydrogen storage vessels: Resin toughening and hydrogen-barrier properties control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fayaz, H. & Saidur, R. & Razali, N. & Anuar, F.S. & Saleman, A.R. & Islam, M.R., 2012. "An overview of hydrogen as a vehicle fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5511-5528.
    2. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Mirza, Umar K. & Ahmad, Nasir & Harijan, Khanji & Majeed, Tariq, 2009. "A vision for hydrogen economy in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1111-1115, June.
    4. Pudukudy, Manoj & Yaakob, Zahira & Mohammad, Masita & Narayanan, Binitha & Sopian, Kamaruzzaman, 2014. "Renewable hydrogen economy in Asia – Opportunities and challenges: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 743-757.
    5. Ermis, K. & Midilli, A. & Dincer, I. & Rosen, M.A., 2007. "Artificial neural network analysis of world green energy use," Energy Policy, Elsevier, vol. 35(3), pages 1731-1743, March.
    6. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    7. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    8. Tarigan, Ari K.M. & Bayer, Stian B., 2012. "Temporal change analysis of public attitude, knowledge and acceptance of hydrogen vehicles in Greater Stavanger, 2006–2009," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5535-5544.
    9. Yilmaz, Fatih & Balta, M. Tolga & Selbaş, Reşat, 2016. "A review of solar based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 171-178.
    10. Valdés, R. & Lucio, J.H. & Rodríguez, L.R., 2013. "Operational simulation of wind power plants for electrolytic hydrogen production connected to a distributed electricity generation grid," Renewable Energy, Elsevier, vol. 53(C), pages 249-257.
    11. Nasir Uddin, Md. & Daud, W.M.A. Wan & Abbas, Hazim F., 2013. "Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 204-224.
    12. Contreras, A. & Posso, F., 2011. "Technical and financial study of the development in Venezuela of the hydrogen energy system," Renewable Energy, Elsevier, vol. 36(11), pages 3114-3123.
    13. Raluca-Andreea Felseghi & Elena Carcadea & Maria Simona Raboaca & Cătălin Nicolae TRUFIN & Constantin Filote, 2019. "Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications," Energies, MDPI, vol. 12(23), pages 1-28, December.
    14. Singh, Sonal & Jain, Shikha & PS, Venkateswaran & Tiwari, Avanish K. & Nouni, Mansa R. & Pandey, Jitendra K. & Goel, Sanket, 2015. "Hydrogen: A sustainable fuel for future of the transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 623-633.
    15. Aydın, Hakan & Turan, Önder & Karakoç, T. Hikmet & Midilli, Adnan, 2013. "Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight," Energy, Elsevier, vol. 58(C), pages 550-560.
    16. Wang, Cui & Jin, Hui & Peng, Pai & Chen, Jia, 2019. "Thermodynamics and LCA analysis of biomass supercritical water gasification system using external recycle of liquid residual," Renewable Energy, Elsevier, vol. 141(C), pages 1117-1126.
    17. Hamdani, Khathir & Smaili, Arezki & Sari, Osmann, 2020. "Numerical simulation of hydrogen active magnetic regenerative liquefier," Renewable Energy, Elsevier, vol. 158(C), pages 487-499.
    18. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    19. Sharma, Sunita & Ghoshal, Sib Krishna, 2015. "Hydrogen the future transportation fuel: From production to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1151-1158.
    20. Midilli, Adnan & Dincer, Ibrahim & Ay, Murat, 2006. "Green energy strategies for sustainable development," Energy Policy, Elsevier, vol. 34(18), pages 3623-3633, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:4:p:1817-1827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.