IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i4p1790-1800.html
   My bibliography  Save this article

Implementation of biofuels in Malaysian transportation sector towards sustainable development: A case study of international cooperation between Malaysia and Japan

Author

Listed:
  • Lim, Steven
  • Lee, Keat Teong

Abstract

Modern transportation nowadays has evolved into an important economic activity for human civilisation. Even though various alternative energy solutions have been put forward to reduce the dependency on fossil fuels, biofuels remain one of the few options which are capable of replacing the roles of fossil fuels in transportation sector without suffering from major economic losses. Malaysia with a huge supply of palm oil for biofuels production is intended to implement mandatory biodiesel blends in its transportation sector in 2011 in order to achieve its carbon reduction commitment towards a more sustainable development. This implementation was originally targeted to start in 2009 but had to be postponed due to several obstacles such as expensive cost, lack of sufficient infrastructure and low public demand. On the other hand, Japan is also trying to fulfil its carbon reduction obligation as outlined under Kyoto Protocol with the usage of biofuels to replace fossil fuels in the transportation sector. However, it lacks sufficient biofuels supply to support its high transportation energy demand. In this case study, the mutual cooperation between Malaysia and Japan in the implementation of biofuels in transportation sector will be studied and analysed in order to overcome the challenges presented in both countries. It is hope to ascertain potential cooperation opportunities amongst those two countries to promote biofuels energy as Malaysia is rich in natural resources whilst Japan has the relevant expertise and technology. It is believed that the strengths from one country can help to cover for the weaknesses from the other and vice versa via closer bilateral partnership which will be extremely crucial when dealing with global energy issues. Ultimately, it is hope that this case study will enable both Malaysian and Japanese government to achieve their renewable energy target in domestic transportation sector.

Suggested Citation

  • Lim, Steven & Lee, Keat Teong, 2012. "Implementation of biofuels in Malaysian transportation sector towards sustainable development: A case study of international cooperation between Malaysia and Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1790-1800.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:4:p:1790-1800
    DOI: 10.1016/j.rser.2012.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112000111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhimin & Tang, Runsheng & Xia, Chaofeng & Luo, Huilong & Zhong, Hao, 2005. "Towards green rural energy in Yunnan, China," Renewable Energy, Elsevier, vol. 30(2), pages 99-108.
    2. Lau, Lee Chung & Tan, Kok Tat & Lee, Keat Teong & Mohamed, Abdul Rahman, 2009. "A comparative study on the energy policies in Japan and Malaysia in fulfilling their nations' obligations towards the Kyoto Protocol," Energy Policy, Elsevier, vol. 37(11), pages 4771-4778, November.
    3. Abdullah, A.Z. & Salamatinia, B. & Mootabadi, H. & Bhatia, S., 2009. "Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil," Energy Policy, Elsevier, vol. 37(12), pages 5440-5448, December.
    4. Torchio, Marco F. & Santarelli, Massimo G., 2010. "Energy, environmental and economic comparison of different powertrain/fuel options using well-to-wheels assessment, energy and external costs – European market analysis," Energy, Elsevier, vol. 35(10), pages 4156-4171.
    5. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    6. Flynn, Peter C., 2002. "Commercializing an alternate vehicle fuel: lessons learned from natural gas for vehicles," Energy Policy, Elsevier, vol. 30(7), pages 613-619, June.
    7. ., 2005. "Challenges in the Electric Energy Industry," Chapters, in: Public Utilities, chapter 13, Edward Elgar Publishing.
    8. Pacini, Henrique & Silveira, Semida, 2011. "Consumer choice between ethanol and gasoline: Lessons from Brazil and Sweden," Energy Policy, Elsevier, vol. 39(11), pages 6936-6942.
    9. Jayed, M.H. & Masjuki, H.H. & Kalam, M.A. & Mahlia, T.M.I. & Husnawan, M. & Liaquat, A.M., 2011. "Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 220-235, January.
    10. Lim, Steven & Teong, Lee Keat, 2010. "Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 938-954, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suhaiza Zailani & Mohammad Iranmanesh & Sunghyup Sean Hyun & Mohd Helmi Ali, 2019. "Applying the Theory of Consumption Values to Explain Drivers’ Willingness to Pay for Biofuels," Sustainability, MDPI, vol. 11(3), pages 1-13, January.
    2. Xiao-Yi Li & Bao-Jun Tang, 2017. "Incorporating the transport sector into carbon emission trading scheme: an overview and outlook," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 683-698, September.
    3. Muhammad Mohiuddin & Abdullah Al Mamun & Fazal Ali Syed & Muhammad Mehedi Masud & Zhan Su, 2018. "Environmental Knowledge, Awareness, and Business School Students’ Intentions to Purchase Green Vehicles in Emerging Countries," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    4. Ghazy, Shams & Tang, Yu Hoe & Mugumya, Kevin Luwemba & Wong, Jing Ying & Chan, Andy, 2022. "Future-proofing Klang Valley’s veins with REBET: A framework for directing transportation technologies towards infrastructure resilience," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    5. Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
    6. Mustapa, Siti Indati & Bekhet, Hussain Ali, 2016. "Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach," Energy Policy, Elsevier, vol. 89(C), pages 171-183.
    7. Nie, Qingyun & Zhang, Lihui & Li, Songrui, 2022. "How can personal carbon trading be applied in electric vehicle subsidies? A Stackelberg game method in private vehicles," Applied Energy, Elsevier, vol. 313(C).
    8. Awalludin, Mohd Fahmi & Sulaiman, Othman & Hashim, Rokiah & Nadhari, Wan Noor Aidawati Wan, 2015. "An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1469-1484.
    9. Gan, Peck Yean & Li, Zhi Dong, 2014. "Econometric study on Malaysia׳s palm oil position in the world market to 2035," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 740-747.
    10. Shekarchian, M. & Moghavvemi, M. & Motasemi, F. & Zarifi, F. & Mahlia, T.M.I., 2012. "Energy and fuel consumption forecast by retrofitting absorption cooling in Malaysia from 2012 to 2025," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6128-6141.
    11. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    12. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2013. "Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 454-462.
    13. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    14. Tarigan, Ari K.M. & Bayer, Stian B., 2012. "Temporal change analysis of public attitude, knowledge and acceptance of hydrogen vehicles in Greater Stavanger, 2006–2009," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5535-5544.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johari, Anwar & Nyakuma, Bemgba Bevan & Mohd Nor, Shadiah Husna & Mat, Ramli & Hashim, Haslenda & Ahmad, Arshad & Yamani Zakaria, Zaki & Tuan Abdullah, Tuan Amran, 2015. "The challenges and prospects of palm oil based biodiesel in Malaysia," Energy, Elsevier, vol. 81(C), pages 255-261.
    2. Abdul-Manan, Amir F.N. & Baharuddin, Azizan & Chang, Lee Wei, 2014. "A detailed survey of the palm and biodiesel industry landscape in Malaysia," Energy, Elsevier, vol. 76(C), pages 931-941.
    3. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    4. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    5. Anuar, Mohd Razealy & Abdullah, Ahmad Zuhairi, 2016. "Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 208-223.
    6. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    7. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H., 2011. "A review on energy scenario and sustainable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 639-647, January.
    8. Foo, K.Y., 2015. "A vision on the opportunities, policies and coping strategies for the energy security and green energy development in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1477-1498.
    9. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    10. Yusoff, Mohd.Hizami Mohd. & Abdullah, Ahmad Zuhairi & Sultana, Shazia & Ahmad, Mushtaq, 2013. "Prospects and current status of B5 biodiesel implementation in Malaysia," Energy Policy, Elsevier, vol. 62(C), pages 456-462.
    11. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    12. Charlotte Stead & Zia Wadud & Chris Nash & Hu Li, 2019. "Introduction of Biodiesel to Rail Transport: Lessons from the Road Sector," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    13. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    14. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    15. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    16. Gan, Peck Yean & Li, Zhi Dong, 2014. "Econometric study on Malaysia׳s palm oil position in the world market to 2035," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 740-747.
    17. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    18. Mekhilef, S. & Siga, S. & Saidur, R., 2011. "A review on palm oil biodiesel as a source of renewable fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1937-1949, May.
    19. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
    20. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:4:p:1790-1800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.