IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v148y2021ics1364032121005827.html
   My bibliography  Save this article

Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems

Author

Listed:
  • Yang, Zaoli
  • Ghadamyari, Mojtaba
  • Khorramdel, Hossein
  • Seyed Alizadeh, Seyed Mehdi
  • Pirouzi, Sasan
  • Milani, Muhammed
  • Banihashemi, Farzad
  • Ghadimi, Noradin

Abstract

Planning of an islanded hybrid system (IHS) with different sources and storages to supply clean, flexible, and highly reliable energy at consumption sites is of high importance. To this end, this paper presents the design of an IHS with a wind turbine, photovoltaic, diesel generator, and stationary (battery) and mobile (electrical vehicles) energy storage systems (ESS). The proposed method includes a multi-objective optimization to minimize the total cost of construction, maintenance, and operation of sources and ESSs within the IHS and the emission level of the system using two separate objective functions. The problem is subject to operational and planning constraints of sources and ESSs and power. Employing the Pareto optimization technique based on the ε-constraint method forms a single-objective optimization problem for the proposed design. The problem involves uncertainties of load, renewable energy, and energy demand of mobile ESSs and has a nonlinear form. Adaptive robust optimization based on a hybrid meta-heuristic algorithm that utilizes a combination of the sine-cosine algorithm (SCA) and crow search algorithm (CSA) is proposed to achieve an optimal robust structure for the suggested scheme. In this scheme, operation model of the mobile storage systems in the IHS considering the uncertainties prediction errors and its model using HMA-based ARO besides adopting the HMA to achieve a unique optimal solution are among the novelties of this research. Eventually, considering the climate data and energy consumption of a region in Rafsanjan, Iran, capabilities of the method in extracting a robust IHS for sources and ESSs are validated depending on optimal economic and environmental conditions. The HMA succeeds to reach an optimal solution with an SD of 0.92% in the final response and this underlines its capability in achieving approximate conditions of unique responsiveness. The proposed scheme with proper planning and operation of sources and storages in the form of a HIS finds optimal values for economic and environmental conditions so that the difference between pollution and cost values from its minimum values at the compromise point is roughly 22%. For 17% uncertainty parameters prediction errors, the scheme obtains a robust structure for the IHS.

Suggested Citation

  • Yang, Zaoli & Ghadamyari, Mojtaba & Khorramdel, Hossein & Seyed Alizadeh, Seyed Mehdi & Pirouzi, Sasan & Milani, Muhammed & Banihashemi, Farzad & Ghadimi, Noradin, 2021. "Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005827
    DOI: 10.1016/j.rser.2021.111295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121005827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acuña, Luceny Guzmán & Padilla, Ricardo Vasquez & Mercado, Alcides Santander, 2017. "Measuring reliability of hybrid photovoltaic-wind energy systems: A new indicator," Renewable Energy, Elsevier, vol. 106(C), pages 68-77.
    2. Mohseni-Bonab, Seyed Masoud & Rabiee, Abbas & Mohammadi-Ivatloo, Behnam, 2016. "Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach," Renewable Energy, Elsevier, vol. 85(C), pages 598-609.
    3. Li, Chong & Zhou, Dequn & Wang, Hui & Cheng, Huanbo & Li, Dongdong, 2019. "Feasibility assessment of a hybrid PV/diesel/battery power system for a housing estate in the severe cold zone—A case study of Harbin, China," Energy, Elsevier, vol. 185(C), pages 671-681.
    4. Askarzadeh, Alireza, 2017. "Distribution generation by photovoltaic and diesel generator systems: Energy management and size optimization by a new approach for a stand-alone application," Energy, Elsevier, vol. 122(C), pages 542-551.
    5. Soudan, Bassel & Darya, Abdollah, 2020. "Autonomous smart switching control for off-grid hybrid PV/battery/diesel power system," Energy, Elsevier, vol. 211(C).
    6. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Ahmed, Salman & Mikulik, Jerzy, 2020. "Performance comparison of heuristic algorithms for optimization of hybrid off-grid renewable energy systems," Energy, Elsevier, vol. 210(C).
    7. Mazzeo, Domenico & Matera, Nicoletta & De Luca, Pierangelo & Baglivo, Cristina & Maria Congedo, Paolo & Oliveti, Giuseppe, 2020. "Worldwide geographical mapping and optimization of stand-alone and grid-connected hybrid renewable system techno-economic performance across Köppen-Geiger climates," Applied Energy, Elsevier, vol. 276(C).
    8. Pirouzi, Sasan & Aghaei, Jamshid & Niknam, Taher & Farahmand, Hossein & Korpås, Magnus, 2018. "Exploring prospective benefits of electric vehicles for optimal energy conditioning in distribution networks," Energy, Elsevier, vol. 157(C), pages 679-689.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Qiang & Fu, Wenxuan & Zhao, Lijuan & Chen, Zhenqian & Su, Huaneng & Xu, Qian, 2023. "A double-layer electrode for the negative side of deep eutectic solvent electrolyte-based vanadium-iron redox flow battery," Energy, Elsevier, vol. 265(C).
    2. Koengkan, Matheus & Fuinhas, José Alberto & Osmani, Fariba & Kazemzadeh, Emad & Auza, Anna & Alavijeh, Nooshin Karimi & Teixeira, Mônica, 2022. "Do financial and fiscal incentive policies increase the energy efficiency ratings in residential properties? A piece of empirical evidence from Portugal," Energy, Elsevier, vol. 241(C).
    3. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    4. Zhang, Yuntian & Zuo, Wei & E, Jiaqiang & Li, Jing & Li, Qingqing & Sun, Ke & Zhou, Kun & Zhang, Guangde, 2022. "Performance comparison between straight channel cold plate and inclined channel cold plate for thermal management of a prismatic LiFePO4 battery," Energy, Elsevier, vol. 248(C).
    5. Wang, Jian & Xu, Yi-Peng & She, Chen & Xu, Ping & Bagal, Hamid Asadi, 2022. "Optimal parameter identification of SOFC model using modified gray wolf optimization algorithm," Energy, Elsevier, vol. 240(C).
    6. Shaik, Saboor & Maduru, Venkata Ramana & Kirankumar, Gorantla & Arıcı, Müslüm & Ghosh, Aritra & Kontoleon, Karolos J. & Afzal, Asif, 2022. "Space-age energy saving, carbon emission mitigation and color rendering perspective of architectural antique stained glass windows," Energy, Elsevier, vol. 259(C).
    7. Abolfazl Mehbodniya & Ali Paeizi & Mehrdad Rezaie & Mahdi Azimian & Hasan Masrur & Tomonobu Senjyu, 2022. "Active and Reactive Power Management in the Smart Distribution Network Enriched with Wind Turbines and Photovoltaic Systems," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    8. Keyvandarian, Ali & Saif, Ahmed, 2023. "Optimal sizing of a reliability-constrained, stand-alone hybrid renewable energy system using robust satisficing," Renewable Energy, Elsevier, vol. 204(C), pages 569-579.
    9. Hamidpour, Hamidreza & Aghaei, Jamshid & Pirouzi, Sasan & Niknam, Taher & Nikoobakht, Ahmad & Lehtonen, Matti & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Coordinated expansion planning problem considering wind farms, energy storage systems and demand response," Energy, Elsevier, vol. 239(PD).
    10. Liu, Xin & Li, Yang & Lin, Xueshan & Guo, Jiqun & Shi, Yunpeng & Shen, Yunwei, 2022. "Dynamic bidding strategy for a demand response aggregator in the frequency regulation market," Applied Energy, Elsevier, vol. 314(C).
    11. Liu, Zhao & Chen, Huicui & Peng, Lian & Ye, Xichen & Xu, Sichen & Zhang, Tong, 2022. "Feedforward-decoupled closed-loop fuzzy proportion-integral-derivative control of air supply system of proton exchange membrane fuel cell," Energy, Elsevier, vol. 240(C).
    12. Qu, Ke & Barreto, Germilly & Iten, Muriel & Wang, Yuhao & Riffat, Saffa, 2023. "Energy and thermal performance of optimised hollow fibre liquid desiccant cooling and dehumidification systems in mediterranean regions: Modelling, validation and case study," Energy, Elsevier, vol. 263(PC).
    13. Saeideh Mahdinia & Mehrdad Rezaie & Marischa Elveny & Noradin Ghadimi & Navid Razmjooy, 2021. "Optimization of PEMFC Model Parameters Using Meta-Heuristics," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    14. Xian, Huafeng & Che, Jinxing, 2022. "Multi-space collaboration framework based optimal model selection for power load forecasting," Applied Energy, Elsevier, vol. 314(C).
    15. Liu, Lijun & Qian, Jin & Hua, Li & Zhang, Bin, 2022. "System estimation of the SOFCs using fractional-order social network search algorithm," Energy, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    2. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2021. "A novel multi-objective stochastic risk co-optimization model of a zero-carbon multi-energy system (ZCMES) incorporating energy storage aging model and integrated demand response," Energy, Elsevier, vol. 226(C).
    3. Eslami, M. & Nahani, P., 2021. "How policies affect the cost-effectiveness of residential renewable energy in Iran: A techno-economic analysis for optimization," Utilities Policy, Elsevier, vol. 72(C).
    4. Pal, Pikaso & Mukherjee, V., 2021. "Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in N," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Li, Chong & Zheng, Yuan & Li, Zhengyong & Zhang, Lei & Zhang, Lin & Shan, Yicai & Tang, Qinghui, 2021. "Techno-economic and environmental evaluation of grid-connected and off-grid hybrid intermittent power generation systems: A case study of a mild humid subtropical climate zone in China," Energy, Elsevier, vol. 230(C).
    6. Ludmil Stoyanov & Ivan Bachev & Zahari Zarkov & Vladimir Lazarov & Gilles Notton, 2021. "Multivariate Analysis of a Wind–PV-Based Water Pumping Hybrid System for Irrigation Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
    7. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
    10. Alvin Henao & Luceny Guzman, 2024. "Exploration of Alternatives to Reduce the Gap in Access to Electricity in Rural Communities—Las Nubes Village Case (Barranquilla, Colombia)," Energies, MDPI, vol. 17(1), pages 1-19, January.
    11. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    12. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    13. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    14. Ruben Zieba Falama & Wojciech Skarka & Serge Yamigno Doka, 2022. "Optimal Design and Comparative Analysis of a PV/Mini-Hydropower and a PV/Battery Used for Electricity and Water Supply," Energies, MDPI, vol. 16(1), pages 1-22, December.
    15. Kong, Xue & Wang, Hongye & Li, Nan & Mu, Hailin, 2022. "Multi-objective optimal allocation and performance evaluation for energy storage in energy systems," Energy, Elsevier, vol. 253(C).
    16. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    17. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    18. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    19. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Mikulik, Jerzy, 2021. "A hybrid method for scenario-based techno-economic-environmental analysis of off-grid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.