Multi-objective optimal allocation and performance evaluation for energy storage in energy systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.124061
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xiao, Wu & Cheng, Andi & Li, Shuai & Jiang, Xiaobin & Ruan, Xuehua & He, Gaohong, 2021. "A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-Ⅱ," Energy, Elsevier, vol. 232(C).
- Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Ahmed, Salman & Mikulik, Jerzy, 2020. "Performance comparison of heuristic algorithms for optimization of hybrid off-grid renewable energy systems," Energy, Elsevier, vol. 210(C).
- Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Long-run power storage requirements for high shares of renewables: Results and sensitivities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 156-171.
- Pal, Ankit & Bhattacharjee, Subhadeep, 2020. "Effectuation of biogas based hybrid energy system for cost-effective decentralized application in small rural community," Energy, Elsevier, vol. 203(C).
- You, Huailiang & Han, Jitian & Liu, Yang & Chen, Changnian & Ge, Yi, 2020. "4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator," Energy, Elsevier, vol. 206(C).
- Aktaş, Ahmet & Kırçiçek, Yağmur, 2020. "A novel optimal energy management strategy for offshore wind/marine current/battery/ultracapacitor hybrid renewable energy system," Energy, Elsevier, vol. 199(C).
- Fodhil, F. & Hamidat, A. & Nadjemi, O., 2019. "Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria," Energy, Elsevier, vol. 169(C), pages 613-624.
- Jaiswal, Abhishek, 2017. "Lithium-ion battery based renewable energy solution for off-grid electricity: A techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 922-934.
- Wang, Rui & Li, Guozheng & Ming, Mengjun & Wu, Guohua & Wang, Ling, 2017. "An efficient multi-objective model and algorithm for sizing a stand-alone hybrid renewable energy system," Energy, Elsevier, vol. 141(C), pages 2288-2299.
- Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
- Javed, Muhammad Shahzad & Zhong, Dan & Ma, Tao & Song, Aotian & Ahmed, Salman, 2020. "Hybrid pumped hydro and battery storage for renewable energy based power supply system," Applied Energy, Elsevier, vol. 257(C).
- Ogunmodede, Oluwaseun & Anderson, Kate & Cutler, Dylan & Newman, Alexandra, 2021. "Optimizing design and dispatch of a renewable energy system," Applied Energy, Elsevier, vol. 287(C).
- Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
- Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
- Lee, Ungki & Park, Sudong & Lee, Ikjin, 2020. "Robust design optimization (RDO) of thermoelectric generator system using non-dominated sorting genetic algorithm II (NSGA-II)," Energy, Elsevier, vol. 196(C).
- Dawoud, Samir M., 2021. "Techno-economic and sensitivity analysis of hybrid electric sources on off-shore oil facilities," Energy, Elsevier, vol. 227(C).
- Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ren, Hongbo & Jiang, Zipei & Wu, Qiong & Li, Qifen & Yang, Yongwen, 2022. "Integrated optimization of a regional integrated energy system with thermal energy storage considering both resilience and reliability," Energy, Elsevier, vol. 261(PB).
- Ma, Y. & Li, Y.P. & Huang, G.H., 2023. "Planning China’s non-deterministic energy system (2021–2060) to achieve carbon neutrality," Applied Energy, Elsevier, vol. 334(C).
- Kalina, Jacek, 2023. "The quest for game changers - Review of new trends and innovations in the design of large-scale energy systems," Energy, Elsevier, vol. 277(C).
- Iraj Faraji Davoudkhani & Farhad Zishan & Saeedeh Mansouri & Farzad Abdollahpour & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya, 2023. "Allocation of Renewable Energy Resources in Distribution Systems While Considering the Uncertainty of Wind and Solar Resources via the Multi-Objective Salp Swarm Algorithm," Energies, MDPI, vol. 16(1), pages 1-17, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Mikulik, Jerzy, 2021. "A hybrid method for scenario-based techno-economic-environmental analysis of off-grid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
- Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
- Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
- Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
- Zerrahn, Alexander & Schill, Wolf-Peter & Kemfert, Claudia, 2018.
"On the economics of electrical storage for variable renewable energy sources,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 108, pages 259-279.
- Zerrahn, Alexander & Schill, Wolf-Peter & Kemfert, Claudia, 2018. "On the economics of electrical storage for variable renewable energy sources," European Economic Review, Elsevier, vol. 108(C), pages 259-279.
- Soini, Martin Christoph & Parra, David & Patel, Martin Kumar, 2020. "Does bulk electricity storage assist wind and solar in replacing dispatchable power production?," Energy Economics, Elsevier, vol. 85(C).
- Koholé, Yemeli Wenceslas & Wankouo Ngouleu, Clint Ameri & Fohagui, Fodoup Cyrille Vincelas & Tchuen, Ghislain, 2024. "Optimization of an off-grid hybrid photovoltaic/wind/diesel/fuel cell system for residential applications power generation employing evolutionary algorithms," Renewable Energy, Elsevier, vol. 224(C).
- Liu, Jia & Chen, Xi & Yang, Hongxing & Shan, Kui, 2021. "Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 290(C).
- Ribó-Pérez, David & Herraiz-Cañete, Ángela & Alfonso-Solar, David & Vargas-Salgado, Carlos & Gómez-Navarro, Tomás, 2021. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER," Renewable Energy, Elsevier, vol. 174(C), pages 501-512.
- Fares, Dalila & Fathi, Mohamed & Mekhilef, Saad, 2022. "Performance evaluation of metaheuristic techniques for optimal sizing of a stand-alone hybrid PV/wind/battery system," Applied Energy, Elsevier, vol. 305(C).
- Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Topalović, Zejneba & Haas, Reinhard & Sayer, Marlene, 2024. "Economic benefits of PHS and Li-ion storage. Study cases: Austria and Bosnia and Herzegovina," Applied Energy, Elsevier, vol. 362(C).
- Lauren E. Natividad & Pablo Benalcazar, 2023. "Hybrid Renewable Energy Systems for Sustainable Rural Development: Perspectives and Challenges in Energy Systems Modeling," Energies, MDPI, vol. 16(3), pages 1-15, January.
- Javier L'opez Prol & Wolf-Peter Schill, 2020.
"The Economics of Variable Renewables and Electricity Storage,"
Papers
2012.15371, arXiv.org.
- López Prol, Javier & Schill, Wolf-Peter, 2021. "The Economics of Variable Renewables and Electricity Storage," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242463, Verein für Socialpolitik / German Economic Association.
- He, Yi & Guo, Su & Dong, Peixin & Huang, Jing & Zhou, Jianxu, 2023. "Hierarchical optimization of policy and design for standalone hybrid power systems considering lifecycle carbon reduction subsidy," Energy, Elsevier, vol. 262(PA).
- Solano, J.C. & Brito, M.C. & Caamaño-Martín, E., 2018. "Impact of fixed charges on the viability of self-consumption photovoltaics," Energy Policy, Elsevier, vol. 122(C), pages 322-331.
- Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
- Marañón-Ledesma, Hector & Tomasgard, Asgeir, 2019.
"Long-Term Electricity Investments Accounting for Demand and Supply Side Flexibility,"
MPRA Paper
92957, University Library of Munich, Germany.
- Marañón-Ledesma, Hector & Tomasgard, Asgeir, 2019. "Long-Term Electricity Investments Accounting for Demand and Supply Side Flexibility," MPRA Paper 93341, University Library of Munich, Germany.
- He, Yi & Guo, Su & Dong, Peixin & Wang, Chen & Huang, Jing & Zhou, Jianxu, 2022. "Techno-economic comparison of different hybrid energy storage systems for off-grid renewable energy applications based on a novel probabilistic reliability index," Applied Energy, Elsevier, vol. 328(C).
More about this item
Keywords
Energy system design; Energy storage system (ESS); Scheduling strategy; Indicator analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:253:y:2022:i:c:s0360544222009641. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.