IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v139y2021ics1364032121000344.html
   My bibliography  Save this article

Development of process performance simulator (PPS) and parametric optimization for sustainable machining considering carbon emission, cost and energy aspects

Author

Listed:
  • Khan, A.M.
  • Liang, L.
  • Mia, M.
  • Gupta, M.K.
  • Wei, Z.
  • Jamil, M.
  • Ning, H.

Abstract

The manufacturing industries consume one-third of global energy. Intensive use of electrical energy in industries provides the researchers and experts strong reasons to develop and propose strategies to minimize energy consumption. Evidently, the advanced technologies such as nanofluid minimum quantity lubrication in machining and process optimization accompanied by holistic models can eliminate the use of conventional fluids to reduce production cost and to cope up with environmental issues of global warming and climate change. This study investigates the holistic analysis of four metrics, i.e., surface quality, energy, cost, and carbon emission that influence the impact of the machining process on the environment of China. Al2O3 based nanofluid was prepared and used in the external turning of Haynes 25 alloys to improve the machining and to promote sustainability. Multi-objective optimization was performed to find out a trade-off relation for product quality, energy consumption and production cost. Results showed that the minimum levels of energy consumption and carbon emission were obtained at the high levels of feed rate and cutting speed. The Carbon Emission Factors (CEF) of used resources have the most significant effects on CO2 emissions. Furthermore, the feed rate was found to be the most significant parameter on the machining performance indices. The application of nanoparticles helped to reduce the cutting energy and CO2 emission, which are proportional to electricity consumption. A holistic component activity-based cost model was developed, and it was noted that the overhead and workpiece cost shared more than 95% of the total cost. Multi-objective optimization reduced specific energy by 18.10%, carbon emission by 22.17% and product cost by 16.25%. Moreover, the present study deals with 3E, i.e., Energy, Environment, and Economy. The optimum cutting parameters obtained from the concept of 3E at the machine shop level can significantly improve efficiency of nanofluid MQL assisted machining (NFMQL) process, reduce cost per unit of product, and achieve the low carbon manufacturing goal.

Suggested Citation

  • Khan, A.M. & Liang, L. & Mia, M. & Gupta, M.K. & Wei, Z. & Jamil, M. & Ning, H., 2021. "Development of process performance simulator (PPS) and parametric optimization for sustainable machining considering carbon emission, cost and energy aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032121000344
    DOI: 10.1016/j.rser.2021.110738
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121000344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110738?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoon, Hae-Sung & Kim, Eun-Seob & Kim, Min-Soo & Lee, Jang-Yeob & Lee, Gyu-Bong & Ahn, Sung-Hoon, 2015. "Towards greener machine tools – A review on energy saving strategies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 870-891.
    2. Aqib Mashood Khan & Muhammad Jamil & Konstantinos Salonitis & Shoaib Sarfraz & Wei Zhao & Ning He & Mozammel Mia & GuoLong Zhao, 2019. "Multi-Objective Optimization of Energy Consumption and Surface Quality in Nanofluid SQCL Assisted Face Milling," Energies, MDPI, vol. 12(4), pages 1-22, February.
    3. Raja, M. & Vijayan, R. & Dineshkumar, P. & Venkatesan, M., 2016. "Review on nanofluids characterization, heat transfer characteristics and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 163-173.
    4. Devendiran, Dhinesh Kumar & Amirtham, Valan Arasu, 2016. "A review on preparation, characterization, properties and applications of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 21-40.
    5. Lu, Hongwei & Tian, Peipei & He, Li, 2019. "Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 788-796.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jinling & Tian, Yebing & Hu, Xintao & Han, Jinguo & Liu, Bing, 2023. "Integrated assessment and optimization of dual environment and production drivers in grinding," Energy, Elsevier, vol. 272(C).
    2. Shuhong Wang & Xiaojing Yi, 2023. "Can the Financial Industry ‘Anchor’ Carbon Emission Reductions?— The Mediating and Moderating Effects of the Technology Market," Energy & Environment, , vol. 34(3), pages 533-559, May.
    3. Md. Rezaul Karim & Juairiya Binte Tariq & Shah Murtoza Morshed & Sabbir Hossain Shawon & Abir Hasan & Chander Prakash & Sunpreet Singh & Raman Kumar & Yadaiah Nirsanametla & Catalin I. Pruncu, 2021. "Environmental, Economical and Technological Analysis of MQL-Assisted Machining of Al-Mg-Zr Alloy Using PCD Tool," Sustainability, MDPI, vol. 13(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    2. Minea, Alina Adriana, 2017. "Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 426-434.
    3. Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
    4. Talebizadehsardari, Pouyan & Shahsavar, Amin & Toghraie, Davood & Barnoon, Pouya, 2019. "An experimental investigation for study the rheological behavior of water–carbon nanotube/magnetite nanofluid subjected to a magnetic field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    5. Aqib Mashood Khan & Saqib Anwar & Munish Kumar Gupta & Abdullah Alfaify & Saqib Hasnain & Muhammad Jamil & Mozammel Mia & Danil Yurievich Pimenov, 2020. "Energy-Based Novel Quantifiable Sustainability Value Assessment Method for Machining Processes," Energies, MDPI, vol. 13(22), pages 1-24, November.
    6. Ali J. Chamkha & Sina Sazegar & Esmael Jamesahar & Mohammad Ghalambaz, 2019. "Thermal Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a Structure Composed of the Layers of Solid and Porous Media and Free Nanofluids," Energies, MDPI, vol. 12(3), pages 1-27, February.
    7. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    9. Xiao, Qinge & Li, Congbo & Tang, Ying & Pan, Jian & Yu, Jun & Chen, Xingzheng, 2019. "Multi-component energy modeling and optimization for sustainable dry gear hobbing," Energy, Elsevier, vol. 187(C).
    10. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    11. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    12. Qin, Caiyan & Zhu, Qunzhi & Li, Xiaoke & Sun, Chunlei & Chen, Meijie & Wu, Xiaohu, 2022. "Slotted metallic nanospheres with both electric and magnetic resonances for solar thermal conversion," Renewable Energy, Elsevier, vol. 197(C), pages 79-88.
    13. Zhanxiao Kang & Liqiu Wang, 2017. "Effect of Thermal-Electric Cross Coupling on Heat Transport in Nanofluids," Energies, MDPI, vol. 10(1), pages 1-13, January.
    14. Eleonora Ponticorvo & Mariagrazia Iuliano & Claudia Cirillo & Angelo Maiorino & Ciro Aprea & Maria Sarno, 2022. "Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid," Energies, MDPI, vol. 15(9), pages 1-21, April.
    15. Cai, Wei & Liu, Fei & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2017. "A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking," Energy, Elsevier, vol. 138(C), pages 332-347.
    16. Chdil, O. & Bikerouin, M. & Balli, M. & Mounkachi, O., 2023. "New horizons in magnetic refrigeration using artificial intelligence," Applied Energy, Elsevier, vol. 335(C).
    17. Pinar Eneren & Yunus Tansu Aksoy & Maria Rosaria Vetrano, 2023. "Practical Challenges in Nanofluid Convective Heat Transfer Inside Silicon Microchannels," Energies, MDPI, vol. 16(23), pages 1-18, December.
    18. Suganthi, K.S. & Rajan, K.S., 2017. "Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 226-255.
    19. Cai, Wei & Wang, Lianguo & Li, Li & Xie, Jun & Jia, Shun & Zhang, Xugang & Jiang, Zhigang & Lai, Kee-hung, 2022. "A review on methods of energy performance improvement towards sustainable manufacturing from perspectives of energy monitoring, evaluation, optimization and benchmarking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032121000344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.