IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3059-d799424.html
   My bibliography  Save this article

Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid

Author

Listed:
  • Eleonora Ponticorvo

    (Department of Physics “E.R. Caianiello”, University of Salerno, 84084 Fisciano, Italy
    Nano_Mates (Research Centre for Nanomaterials and Nanotechnology at the University of Salerno), University of Salerno, 84084 Fisciano, Italy
    These authors contributed equally to this work.)

  • Mariagrazia Iuliano

    (Nano_Mates (Research Centre for Nanomaterials and Nanotechnology at the University of Salerno), University of Salerno, 84084 Fisciano, Italy
    Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy
    These authors contributed equally to this work.)

  • Claudia Cirillo

    (Department of Physics “E.R. Caianiello”, University of Salerno, 84084 Fisciano, Italy
    Nano_Mates (Research Centre for Nanomaterials and Nanotechnology at the University of Salerno), University of Salerno, 84084 Fisciano, Italy
    These authors contributed equally to this work.)

  • Angelo Maiorino

    (Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy)

  • Ciro Aprea

    (Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy)

  • Maria Sarno

    (Department of Physics “E.R. Caianiello”, University of Salerno, 84084 Fisciano, Italy
    Nano_Mates (Research Centre for Nanomaterials and Nanotechnology at the University of Salerno), University of Salerno, 84084 Fisciano, Italy)

Abstract

Nanofluids as heat transfer fluids have been acquiring popularity ever since their beginning. Therefore, the refrigeration research could not keep itself away from the ever-rising horizon of nanofluid applications. On the other hand, nanofluid stability remains the critical bottleneck for use. A significant reduction in nanofluids’ performance can derivate from instability phenomena. Looking to industrial applications, nanofluid long-term stability and reusability are crucial requisites. Nanoparticles’ deposits induce microchannel circuit obstruction, limiting the proper functioning of the device and negating the beneficial characteristics of the nanofluid. The aggregation and sedimentation of the particles may also determine the increased viscosity and pumping cost, and reduced thermal properties. So, there is a need to address the features of nanofluid starting from realization, evaluation, stabilization methods, and operational aspects. In this review, investigations of nanorefrigerants are summarized. In particular, a description of the preparation procedures of nanofluids was reported, followed by a deep elucidation of the mechanism of nanofluid destabilization and sedimentation, and finally, the literature results in this field were reviewed.

Suggested Citation

  • Eleonora Ponticorvo & Mariagrazia Iuliano & Claudia Cirillo & Angelo Maiorino & Ciro Aprea & Maria Sarno, 2022. "Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid," Energies, MDPI, vol. 15(9), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3059-:d:799424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3059/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3059/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trisaksri, Visinee & Wongwises, Somchai, 2007. "Critical review of heat transfer characteristics of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 512-523, April.
    2. Gupta, Munish & Singh, Vinay & Kumar, Rajesh & Said, Z., 2017. "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 638-670.
    3. Kasaeian, Alibakhsh & Eshghi, Amin Toghi & Sameti, Mohammad, 2015. "A review on the applications of nanofluids in solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 584-598.
    4. Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
    5. Devendiran, Dhinesh Kumar & Amirtham, Valan Arasu, 2016. "A review on preparation, characterization, properties and applications of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 21-40.
    6. Park, Ki-Jung & Seo, Taebeom & Jung, Dongsoo, 2007. "Performance of alternative refrigerants for residential air-conditioning applications," Applied Energy, Elsevier, vol. 84(10), pages 985-991, October.
    7. Sarkar, Jahar, 2011. "A critical review on convective heat transfer correlations of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3271-3277, August.
    8. Mohammed, H.A. & Al-aswadi, A.A. & Shuaib, N.H. & Saidur, R., 2011. "Convective heat transfer and fluid flow study over a step using nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2921-2939, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    2. Chandrasekar, M. & Suresh, S. & Senthilkumar, T., 2012. "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3917-3938.
    3. Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
    4. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    5. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    6. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    8. Sharma, Anuj Kumar & Tiwari, Arun Kumar & Dixit, Amit Rai, 2016. "Rheological behaviour of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 779-791.
    9. Ahmad, S.H.A. & Saidur, R. & Mahbubul, I.M. & Al-Sulaiman, F.A., 2017. "Optical properties of various nanofluids used in solar collector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1014-1030.
    10. Gupta, Munish & Singh, Vinay & Kumar, Rajesh & Said, Z., 2017. "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 638-670.
    11. Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
    12. Murshed, S.M. Sohel & Nieto de Castro, C.A., 2016. "Conduction and convection heat transfer characteristics of ethylene glycol based nanofluids – A review," Applied Energy, Elsevier, vol. 184(C), pages 681-695.
    13. Gürdal, Mehmet & Arslan, Kamil & Gedik, Engin & Minea, Alina Adriana, 2022. "Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
    15. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    16. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    17. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    18. Chdil, O. & Bikerouin, M. & Balli, M. & Mounkachi, O., 2023. "New horizons in magnetic refrigeration using artificial intelligence," Applied Energy, Elsevier, vol. 335(C).
    19. Lomascolo, Mauro & Colangelo, Gianpiero & Milanese, Marco & de Risi, Arturo, 2015. "Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1182-1198.
    20. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3059-:d:799424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.