Nanofluid-Enhanced HVAC&R Systems (2015–2025): Experimental, Numerical, and AI-Driven Insights with a Strategic Roadmap
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mahbubul, I.M. & Khan, Mohammed Mumtaz A. & Ibrahim, Nasiru I. & Ali, Hafiz Muhammad & Al-Sulaiman, Fahad A. & Saidur, R., 2018. "Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector," Renewable Energy, Elsevier, vol. 121(C), pages 36-44.
- Nourafkan, E. & Asachi, M. & Jin, H. & Wen, D. & Ahmed, W., 2019. "Stability and photo-thermal conversion performance of binary nanofluids for solar absorption refrigeration systems," Renewable Energy, Elsevier, vol. 140(C), pages 264-273.
- Eleonora Ponticorvo & Mariagrazia Iuliano & Claudia Cirillo & Angelo Maiorino & Ciro Aprea & Maria Sarno, 2022. "Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid," Energies, MDPI, vol. 15(9), pages 1-21, April.
- Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2020. "The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor compression cooler," Energy, Elsevier, vol. 190(C).
- Wu, Shenyi & Rincon Ortiz, Camilo, 2020. "Experimental investigation of the effect of magnetic field on vapour absorption with LiBr–H2O nanofluid," Energy, Elsevier, vol. 193(C).
- Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
- Souad Benkherbache & Salah Amroune & Ahmed Belaadi & Said Zergane & Chouki Farsi, 2024. "Numerical Analysis of Natural Convection in an Annular Cavity Filled with Hybrid Nanofluids under Magnetic Field," Energies, MDPI, vol. 17(18), pages 1-22, September.
- Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
- Mahesh Suresh Patil & Sung Chul Kim & Jae-Hyeong Seo & Moo-Yeon Lee, 2015. "Review of the Thermo-Physical Properties and Performance Characteristics of a Refrigeration System Using Refrigerant-Based Nanofluids," Energies, MDPI, vol. 9(1), pages 1-16, December.
- Bruno Pinheiro Serrao & Kyung Mo Kim & Juliana Pacheco Duarte, 2023. "Analysis of the Effects of Different Nanofluids on Critical Heat Flux Using Artificial Intelligence," Energies, MDPI, vol. 16(12), pages 1-26, June.
- Javed Syed, 2024. "Enhancement of Heat Transfer Using Water/Graphene Nanofluid and the Impact of Passive Techniques—Experimental, Numerical, and ML Approaches," Energies, MDPI, vol. 18(1), pages 1-26, December.
- Ankan Basu & Aritra Saha & Sumanta Banerjee & Prokash C. Roy & Balaram Kundu, 2024. "A Review of Artificial Intelligence Methods in Predicting Thermophysical Properties of Nanofluids for Heat Transfer Applications," Energies, MDPI, vol. 17(6), pages 1-31, March.
- Hojjat, Mohammad, 2020. "Nanofluids as coolant in a shell and tube heat exchanger: ANN modeling and multi-objective optimization," Applied Mathematics and Computation, Elsevier, vol. 365(C).
- Ciro Aprea & Adriana Greco & Angelo Maiorino & Claudia Masselli, 2019. "Enhancing the Heat Transfer in an Active Barocaloric Cooling System Using Ethylene-Glycol Based Nanofluids as Secondary Medium," Energies, MDPI, vol. 12(15), pages 1-15, July.
- Gianpiero Colangelo & Brenda Raho & Marco Milanese & Arturo de Risi, 2021. "Numerical Evaluation of a HVAC System Based on a High-Performance Heat Transfer Fluid," Energies, MDPI, vol. 14(11), pages 1-18, June.
- Amir Zolghadri & Heydar Maddah & Mohammad Hossein Ahmadi & Mohsen Sharifpur, 2021. "Predicting Parameters of Heat Transfer in a Shell and Tube Heat Exchanger Using Aluminum Oxide Nanofluid with Artificial Neural Network (ANN) and Self-Organizing Map (SOM)," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
- Marco Milanese & Francesco Micali & Gianpiero Colangelo & Arturo de Risi, 2022. "Experimental Evaluation of a Full-Scale HVAC System Working with Nanofluid," Energies, MDPI, vol. 15(8), pages 1-14, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ashan Induranga & Chanaka Galpaya & Vimukthi Vithanage & Amalka Indupama & Kaveendra Maduwantha & Niroshan Gunawardana & Dasith Wijesekara & Prasad Amarasinghe & Helitha Nilmalgoda & Kasundi Gunasena , 2025. "Nanofluids for Heat Transfer: Advances in Thermo-Physical Properties, Theoretical Insights, and Engineering Applications," Energies, MDPI, vol. 18(8), pages 1-32, April.
- Luca Cirillo & Adriana Greco & Claudia Masselli, 2023. "A Solid-to-Solid 2D Model of a Magnetocaloric Cooler with Thermal Diodes: A Sustainable Way for Refrigerating," Energies, MDPI, vol. 16(13), pages 1-17, July.
- Liang, Jierong & Masche, Marvin & Wang, Kun & Sittig, Tim & Benke, Dimitri & Fries, Maximilian & Engelbrecht, Kurt & Bahl, Christian R.H., 2024. "Scaling up magnetocaloric heat pump for building decarbonization initiatives," Energy, Elsevier, vol. 310(C).
- Venegas, M. & de Vega, M. & García-Hernando, N., 2025. "Performance improvement of absorption chillers: A review on nanoparticle addition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
- Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
- Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
- Wang, Kongxiang & He, Yan & Kan, Ankang & Yu, Wei & Wang, Debing & Zhang, Liyie & Zhu, Guihua & Xie, Huaqing & She, Xiaohui, 2019. "Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors," Applied Energy, Elsevier, vol. 254(C).
- Sadeghi, Gholamabbas & Najafzadeh, Mohammad & Ameri, Mehran, 2020. "Thermal characteristics of evacuated tube solar collectors with coil inside: An experimental study and evolutionary algorithms," Renewable Energy, Elsevier, vol. 151(C), pages 575-588.
- Zeyu Xu & Wei Zhang & Qianqian Zhang & Xiangrui Zhai & Xufei Yang & Yajun Deng & Xi Wang, 2025. "Experimental Study on Flow Boiling Heat Transfer Characteristics in Top-Connected Microchannels with a Ni/Ag Micro/Nano Composite Structure," Energies, MDPI, vol. 18(7), pages 1-16, April.
- Domenico Palladino & Flavio Scrucca & Nicolandrea Calabrese & Grazia Barberio & Carlo Ingrao, 2021. "Durum-Wheat Straw Bales for Thermal Insulation of Buildings: Findings from a Comparative Energy Analysis of a Set of Wall-Composition Samples on the Building Scale," Energies, MDPI, vol. 14(17), pages 1-19, September.
- Łukasz Mika & Ewelina Radomska & Karol Sztekler & Andrzej Gołdasz & Wiesław Zima, 2025. "Review of Selected PCMs and Their Applications in the Industry and Energy Sector," Energies, MDPI, vol. 18(5), pages 1-27, March.
- Chen, Haifei & Li, Xulei & Gao, Jian & Cao, Jingyu & Dong, Hao & Wang, Wenjie & Chen, Yawei, 2025. "Comparative study on a solar-assisted ground source heat pump with CPC solar collector and phase change heat storage," Renewable Energy, Elsevier, vol. 239(C).
- Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
- Zakir Khan & Zulfiqar Ahmad Khan, 2021. "Performance Evaluation of Coupled Thermal Enhancement through Novel Wire-Wound Fins Design and Graphene Nano-Platelets in Shell-and-Tube Latent Heat Storage System," Energies, MDPI, vol. 14(13), pages 1-21, June.
- Zhu, Yalin & Qin, Yaosong & Liang, Shuen & Chen, Keping & Tian, Chunrong & Wang, Jianhua & Luo, Xuan & Zhang, Lin, 2019. "Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling," Applied Energy, Elsevier, vol. 250(C), pages 98-108.
- Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
- Kumma, Nagarjuna & Kruthiventi, S.S Harish, 2024. "Current status of refrigerants used in domestic applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Ali Kalair & Elmira Jamei & Mehdi Seyedmahmoudian & Saad Mekhilef & Naeem Abas, 2024. "Building the Future: Integrating Phase Change Materials in Network of Nanogrids (NoN)," Energies, MDPI, vol. 17(23), pages 1-41, November.
- Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7371-:d:1724774. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i16p7371-d1724774.html