IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p9119-d438986.html
   My bibliography  Save this article

State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment

Author

Listed:
  • Seyed Reza Shamshirgaran

    (Department of Renewable Energy Engineering, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran 1983969411, Iran)

  • Hussain H. Al-Kayiem

    (Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia)

  • Korada V. Sharma

    (Mechanical Engineering Department, JNTUH College of Engineering, Telangana 500085, India)

  • Mostafa Ghasemi

    (Chemical Engineering Section, Sohar University, Sohar 311, Oman)

Abstract

Emerging nanotechnology with solar collector technology has attracted the attention of researchers to enhance the performance of solar systems in order to develop efficient solar thermal systems for future sustainability. This paper chronologically reviews the various research works carried out on the performance enhancement of nanofluid-filled flat-plate solar collectors (FPCs). Gaps in the radiation exergy models and maximum exergy of FPCs, the importance of pressure drops in collector manifolds in exergy analysis, and the economics of nanofluid-laden FPCs have been addressed. The necessity of replacing currently used chemically derived glycol products with a renewable-based glycol has not been reported in the current literature thoroughly, but it is pondered in the current paper. Moreover, the thermophysical properties of all common metal and metal oxide nanoparticles utilized in various studies are collected in this paper for the first time and can be referred to quickly as a data source for future studies. The different classical empirical correlations for the estimation of specific heat, density, conductivity, and viscosity of reported nanofluids and base liquids, i.e., water and its mixture with glycols, are also tabulated as a quick reference. Brief insights on different performance criteria and the utilized models of heat transfer, energy efficiency, exergy efficiency, and economic calculation of nanofluid-based FPCs are extracted. Most importantly, a summary of the current progress in the field of nanofluid-charged FPCs is presented appropriately within two tables. The tables contain the status of the main parameters in different research works. Finally, gaps in the literature are addressed and mitigation approaches are suggested for the future sustainability of nanofluid-laden FPCs.

Suggested Citation

  • Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:9119-:d:438986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/9119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/9119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javadi, F.S. & Saidur, R. & Kamalisarvestani, M., 2013. "Investigating performance improvement of solar collectors by using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 232-245.
    2. Caliskan, Hakan, 2017. "Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 488-492.
    3. Khanafer, Khalil & Vafai, Kambiz, 2018. "A review on the applications of nanofluids in solar energy field," Renewable Energy, Elsevier, vol. 123(C), pages 398-406.
    4. Kaygusuz, K. & Ayhan, T., 1993. "Exergy analysis of solar-assisted heat-pump systems for domestic heating," Energy, Elsevier, vol. 18(10), pages 1077-1085.
    5. Minea, Alina Adriana, 2017. "Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 426-434.
    6. Gupta, Munish & Singh, Vinay & Kumar, Rajesh & Said, Z., 2017. "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 638-670.
    7. Bertocchi, Rudi & Karni, Jacob & Kribus, Abraham, 2004. "Experimental evaluation of a non-isothermal high temperature solar particle receiver," Energy, Elsevier, vol. 29(5), pages 687-700.
    8. Pandey, Krishna Murari & Chaurasiya, Rajesh, 2017. "A review on analysis and development of solar flat plate collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 641-650.
    9. Kasaeian, Alibakhsh & Eshghi, Amin Toghi & Sameti, Mohammad, 2015. "A review on the applications of nanofluids in solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 584-598.
    10. Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
    11. Colangelo, Gianpiero & Favale, Ernani & de Risi, Arturo & Laforgia, Domenico, 2013. "A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids," Applied Energy, Elsevier, vol. 111(C), pages 80-93.
    12. Sakhaei, Seyed Ali & Valipour, Mohammad Sadegh, 2019. "Performance enhancement analysis of The flat plate collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 186-204.
    13. Farahat, S. & Sarhaddi, F. & Ajam, H., 2009. "Exergetic optimization of flat plate solar collectors," Renewable Energy, Elsevier, vol. 34(4), pages 1169-1174.
    14. Saha, Samir Kumar & Mahanta, D.K, 2001. "Thermodynamic optimization of solar flat-plate collector," Renewable Energy, Elsevier, vol. 23(2), pages 181-193.
    15. Jouybari, H. Javaniyan & Saedodin, S. & Zamzamian, A. & Nimvari, M. Eshagh & Wongwises, S., 2017. "Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: An experimental study," Renewable Energy, Elsevier, vol. 114(PB), pages 1407-1418.
    16. Shamshirgaran, Seyed Reza & Khalaji Assadi, Morteza & Badescu, Viorel & Al-Kayiem, Hussain H., 2018. "Upper limits for the work extraction by nanofluid-filled selective flat-plate solar collectors," Energy, Elsevier, vol. 160(C), pages 875-885.
    17. Jafarkazemi, Farzad & Ahmadifard, Emad, 2013. "Energetic and exergetic evaluation of flat plate solar collectors," Renewable Energy, Elsevier, vol. 56(C), pages 55-63.
    18. Torres R, E & Picon Nuñez, M & Cervantes de G, J, 1998. "Exergy analysis and optimization of a solar-assisted heat pump," Energy, Elsevier, vol. 23(4), pages 337-344.
    19. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2018. "Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector," Renewable Energy, Elsevier, vol. 116(PA), pages 9-21.
    20. Luminosu, I. & Fara, L., 2005. "Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation," Energy, Elsevier, vol. 30(5), pages 731-747.
    21. Chaabene, M. & Annabi, M., 1997. "A dynamic model for predicting solar plant performance and optimum control," Energy, Elsevier, vol. 22(6), pages 567-578.
    22. Farajzadeh, Ehsan & Movahed, Saeid & Hosseini, Reza, 2018. "Experimental and numerical investigations on the effect of Al2O3/TiO2H2O nanofluids on thermal efficiency of the flat plate solar collector," Renewable Energy, Elsevier, vol. 118(C), pages 122-130.
    23. Muhammad, Mahmud Jamil & Muhammad, Isa Adamu & Sidik, Nor Azwadi Che & Yazid, Muhammad Noor Afiq Witri Muhammad & Mamat, Rizalman & Najafi, G., 2016. "The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 226-236.
    24. Akilu, Suleiman & Sharma, K.V. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman, 2016. "A review of thermophysical properties of water based composite nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 654-678.
    25. Raj, Pankaj & Subudhi, Sudhakar, 2018. "A review of studies using nanofluids in flat-plate and direct absorption solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 54-74.
    26. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo, 2016. "Innovation in flat solar thermal collectors: A review of the last ten years experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1141-1159.
    27. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "Thermal and exergy optimization of a nanofluid-based direct absorption solar collector," Renewable Energy, Elsevier, vol. 106(C), pages 274-287.
    28. Sharafeldin, Mahmoud Ahmed & Gróf, Gyula & Mahian, Omid, 2017. "Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids," Energy, Elsevier, vol. 141(C), pages 2436-2444.
    29. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mostafa Ghasemi & Mehdi Sedighi & Yie Hua Tan, 2021. "Carbon Nanotube/Pt Cathode Nanocomposite Electrode in Microbial Fuel Cells for Wastewater Treatment and Bioenergy Production," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
    2. Fatih Selimefendigil & Hakan F. Oztop & Ali J. Chamkha, 2021. "Jet Impingement Heat Transfer of Confined Single and Double Jets with Non-Newtonian Power Law Nanofluid under the Inclined Magnetic Field Effects for a Partly Curved Heated Wall," Sustainability, MDPI, vol. 13(9), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    2. Shamshirgaran, Seyed Reza & Khalaji Assadi, Morteza & Badescu, Viorel & Al-Kayiem, Hussain H., 2018. "Upper limits for the work extraction by nanofluid-filled selective flat-plate solar collectors," Energy, Elsevier, vol. 160(C), pages 875-885.
    3. Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
    4. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    5. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Akram, Naveed & Montazer, Elham & Kazi, S.N. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Zubir, Mohd Nashrul Mohd & Afzal, Asif & Muhammad, Mohd Ridha & Ali, Hafiz Muhammad & Márquez, Fausto Pedro , 2021. "Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids," Energy, Elsevier, vol. 227(C).
    7. Muhammad, Mahmud Jamil & Muhammad, Isa Adamu & Sidik, Nor Azwadi Che & Yazid, Muhammad Noor Afiq Witri Muhammad & Mamat, Rizalman & Najafi, G., 2016. "The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 226-236.
    8. R. M. Mostafizur & M. G. Rasul & M. N. Nabi, 2021. "Energy and Exergy Analyses of a Flat Plate Solar Collector Using Various Nanofluids: An Analytical Approach," Energies, MDPI, vol. 14(14), pages 1-19, July.
    9. Hussein, Ahmed Kadhim, 2016. "Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 767-792.
    10. Murshed, S.M. Sohel & Nieto de Castro, C.A., 2016. "Conduction and convection heat transfer characteristics of ethylene glycol based nanofluids – A review," Applied Energy, Elsevier, vol. 184(C), pages 681-695.
    11. Purohit, Nilesh & Jakhar, Sanjeev & Gullo, Paride & Dasgupta, Mani Sankar, 2018. "Heat transfer and entropy generation analysis of alumina/water nanofluid in a flat plate PV/T collector under equal pumping power comparison criterion," Renewable Energy, Elsevier, vol. 120(C), pages 14-22.
    12. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    14. Suganthi, K.S. & Rajan, K.S., 2017. "Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 226-255.
    15. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2018. "Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector," Renewable Energy, Elsevier, vol. 116(PA), pages 9-21.
    17. Saffarian, Mohammad Reza & Moravej, Mojtaba & Doranehgard, Mohammad Hossein, 2020. "Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid," Renewable Energy, Elsevier, vol. 146(C), pages 2316-2329.
    18. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, Puthuveettil Sreedharan, 2017. "Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 655-669.
    19. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Bazdidi-Tehrani, Farzad & Khabazipur, Arash & Vasefi, Seyed Iman, 2018. "Flow and heat transfer analysis of TiO2/water nanofluid in a ribbed flat-plate solar collector," Renewable Energy, Elsevier, vol. 122(C), pages 406-418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:9119-:d:438986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.