IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v115y2019ics1364032119305659.html
   My bibliography  Save this article

Evaluation of the potential of bio-methane production from field-based crop residues in Africa

Author

Listed:
  • Bundhoo, Zumar M.A.
  • Surroop, Dinesh

Abstract

Africa is heavily dependent on solid biomass such as fuelwood for its energy requirements while low electricity access is a major issue in many African countries. This article evaluated the potential of bio-methane and bio-energy production from anaerobic digestion of field-based residues generated from 15 crops cultivated in Africa. The bio-energy potentials were evaluated using the residue-to-product ratios of the crops, the methane yields (L/g volatile solids) of the crop residues and the calorific value of methane gas. Among the residues investigated, rice straw produces the highest amount of bio-methane and bio-energy followed by wheat straw and maize stalk owing to the higher bio-methane yield of rice straw as opposed to the other two crop residues. The annual bio-methane and bio-energy potential from field-based crop residues in Africa is estimated at 31,303 Mm3 and 1141 PJ respectively while combustion of the bio-methane in a combined heat and power system is expected to generate 109.7 TWh of electricity and 133 TWh of thermal energy annually, with the 109.7 TWh of electricity potentially supplying 16.3% of Africa's electricity requirements. Comparing African countries, Egypt has the highest bio-methane potential while Djibouti has the lowest potential. On a per capita basis, Eswatini (formerly Swaziland) and Mauritius have the highest electrical energy potential of 424.2 kWh/capita and 297.3 kWh/capita respectively. With implementation of the technology still in its infancy stage, this article also elaborated on several recommendations and steps to facilitate the development of large-scale anaerobic digestion in Africa. Finally, the limitations of the current study were outlined and recommendations for future works were put forward.

Suggested Citation

  • Bundhoo, Zumar M.A. & Surroop, Dinesh, 2019. "Evaluation of the potential of bio-methane production from field-based crop residues in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119305659
    DOI: 10.1016/j.rser.2019.109357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119305659
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrea G. Capodaglio & Arianna Callegari & Maria Virginia Lopez, 2016. "European Framework for the Diffusion of Biogas Uses: Emerging Technologies, Acceptance, Incentive Strategies, and Institutional-Regulatory Support," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
    2. Jingura, Raphael M. & Matengaifa, Rutendo, 2009. "Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1116-1120, June.
    3. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2015. "Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 468-476.
    4. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    5. Perlack, R.D. & Turhollow, A.F., 2003. "Feedstock cost analysis of corn stover residues for further processing," Energy, Elsevier, vol. 28(14), pages 1395-1403.
    6. Xun Liu & Serge Hiligsmann & R. Gourdon & Rémy Bayard, 2017. "Anaerobic digestion of lignocellulosic biomasses pretreated with Ceriporiopsis subvermispora," ULB Institutional Repository 2013/247652, ULB -- Universite Libre de Bruxelles.
    7. Bundhoo, Zumar M.A. & Mauthoor, Sumayya & Mohee, Romeela, 2016. "Potential of biogas production from biomass and waste materials in the Small Island Developing State of Mauritius," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1087-1100.
    8. Adl, Mehrdad & Sheng, Kuichuan & Gharibi, Arash, 2012. "Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments," Applied Energy, Elsevier, vol. 93(C), pages 251-260.
    9. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    10. Diouf, Boucar & Miezan, Ekra, 2019. "The biogas initiative in developing countries, from technical potential to failure: The case study of Senegal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 248-254.
    11. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2016. "Broadening the potential of biogas in Sub-Saharan Africa: An assessment of feasible technologies and feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 556-571.
    12. Tock, Jing Yan & Lai, Chin Lin & Lee, Keat Teong & Tan, Kok Tat & Bhatia, Subhash, 2010. "Banana biomass as potential renewable energy resource: A Malaysian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 798-805, February.
    13. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    14. Rahman, Khondokar M. & Woodard, Ryan & Manzanares, Elizabeth & Harder, Marie K., 2014. "An assessment of anaerobic digestion capacity in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 762-769.
    15. Arthur, Richard & Baidoo, Martina Francisca & Antwi, Edward, 2011. "Biogas as a potential renewable energy source: A Ghanaian case study," Renewable Energy, Elsevier, vol. 36(5), pages 1510-1516.
    16. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    17. Isci, A. & Demirer, G.N., 2007. "Biogas production potential from cotton wastes," Renewable Energy, Elsevier, vol. 32(5), pages 750-757.
    18. Li, Yebo & Park, Stephen Y. & Zhu, Jiying, 2011. "Solid-state anaerobic digestion for methane production from organic waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 821-826, January.
    19. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    20. Scarlat, N. & Motola, V. & Dallemand, J.F. & Monforti-Ferrario, F. & Mofor, Linus, 2015. "Evaluation of energy potential of Municipal Solid Waste from African urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1269-1286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    2. Njoh, Ambe J., 2021. "A systematic review of environmental determinants of renewable energy performance in Ethiopia: A PESTECH analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Yazdanparast, R. & Jolai, F. & Pishvaee, M.S. & Keramati, A., 2022. "A resilient drop-in biofuel supply chain integrated with existing petroleum infrastructure: Toward more sustainable transport fuel solutions," Renewable Energy, Elsevier, vol. 184(C), pages 799-819.
    4. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bundhoo, Zumar M.A. & Mauthoor, Sumayya & Mohee, Romeela, 2016. "Potential of biogas production from biomass and waste materials in the Small Island Developing State of Mauritius," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1087-1100.
    2. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    3. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Ahmad, Munir & Irfan, Muhammad, 2021. "Analysis on barriers to biogas dissemination in Rwanda: AHP approach," Renewable Energy, Elsevier, vol. 163(C), pages 1127-1137.
    4. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    6. Zahida Aslam & Hu Li & James Hammerton & Gordon Andrews & Andrew Ross & Jon C. Lovett, 2021. "Increasing Access to Electricity: An Assessment of the Energy and Power Generation Potential from Biomass Waste Residues in Tanzania," Energies, MDPI, vol. 14(6), pages 1-22, March.
    7. Suberu, Mohammed Yekini & Bashir, Nouruddeen & Mustafa, Mohd. Wazir, 2013. "Biogenic waste methane emissions and methane optimization for bioelectricity in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 643-654.
    8. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Shane, Agabu & Gheewala, Shabbir H. & Phiri, Seveliano, 2017. "Rural domestic biogas supply model for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 683-697.
    10. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2017. "Development of an optimal biogas system design model for Sub-Saharan Africa with case studies from Kenya and Cameroon," Renewable Energy, Elsevier, vol. 109(C), pages 586-601.
    11. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    13. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    14. Bär, Roger & Reinhard, Jürgen & Ehrensperger, Albrecht & Kiteme, Boniface & Mkunda, Thomas & Wymann von Dach, Susanne, 2021. "The future of charcoal, firewood, and biogas in Kitui County and Kilimanjaro Region: Scenario development for policy support," Energy Policy, Elsevier, vol. 150(C).
    15. Tatiana Nevzorova, 2020. "Biogas Production in the Russian Federation: Current Status, Potential, and Barriers," Energies, MDPI, vol. 13(14), pages 1-21, July.
    16. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
    17. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    18. Kimball C. Chen & Matthew Leach & Mairi J. Black & Meron Tesfamichael & Francis Kemausuor & Patrick Littlewood & Terry Marker & Onesmus Mwabonje & Yacob Mulugetta & Richard J. Murphy & Rocio Diaz-Chav, 2021. "BioLPG for Clean Cooking in Sub-Saharan Africa: Present and Future Feasibility of Technologies, Feedstocks, Enabling Conditions and Financing," Energies, MDPI, vol. 14(13), pages 1-22, June.
    19. Andreas Otto Wagner & Nina Lackner & Mira Mutschlechner & Eva Maria Prem & Rudolf Markt & Paul Illmer, 2018. "Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production," Energies, MDPI, vol. 11(7), pages 1-14, July.
    20. Coimbra-Araújo, Carlos H. & Mariane, Leidiane & Júnior, Cicero Bley & Frigo, Elisandro Pires & Frigo, Michelle Sato & Araújo, Izabela Regina Costa & Alves, Helton José, 2014. "Brazilian case study for biogas energy: Production of electric power, heat and automotive energy in condominiums of agroenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 826-839.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119305659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.