IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v89y2016icp27-35.html
   My bibliography  Save this article

Product distribution from solar pyrolysis of agricultural and forestry biomass residues

Author

Listed:
  • Li, Rui
  • Zeng, Kuo
  • Soria, José
  • Mazza, Germán
  • Gauthier, Daniel
  • Rodriguez, Rosa
  • Flamant, Gilles

Abstract

Solar pyrolysis of pine sawdust, peach pit, grape stalk and grape marc was conducted in a lab-scale solar reactor for producing fuel gas from these agricultural and forestry by-products. For each type of biomass, whose lignocellulose components vary, the investigated parameters were the final temperature (in the range 800°C–2000 °C) and the heating rates (in the range 10–150 °C/s) under a constant sweep gas flow rate of 6 NL/min. The parameter influence on the pyrolysis product distribution and syngas composition was studied. The experimental results indicate that the gas yield generally increases with the temperature and heating rate for the various types of biomass residues, whereas the liquid yield progresses oppositely. Gas yield as high as 63.5wt% was obtained from pine sawdust pyrolyzed at a final temperature of 2000 °C and heating rate of 50 °C/s. This gas can be further utilized for power generation, heat or transportable fuel production.

Suggested Citation

  • Li, Rui & Zeng, Kuo & Soria, José & Mazza, Germán & Gauthier, Daniel & Rodriguez, Rosa & Flamant, Gilles, 2016. "Product distribution from solar pyrolysis of agricultural and forestry biomass residues," Renewable Energy, Elsevier, vol. 89(C), pages 27-35.
  • Handle: RePEc:eee:renene:v:89:y:2016:i:c:p:27-35
    DOI: 10.1016/j.renene.2015.11.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115304870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.11.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    2. Williams, Paul T. & Besler, Serpil, 1996. "The influence of temperature and heating rate on the slow pyrolysis of biomass," Renewable Energy, Elsevier, vol. 7(3), pages 233-250.
    3. Van de Velden, Manon & Baeyens, Jan & Brems, Anke & Janssens, Bart & Dewil, Raf, 2010. "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction," Renewable Energy, Elsevier, vol. 35(1), pages 232-242.
    4. Nzihou, Ange & Flamant, Gilles & Stanmore, Brian, 2012. "Synthetic fuels from biomass using concentrated solar energy – A review," Energy, Elsevier, vol. 42(1), pages 121-131.
    5. Zeng, Kuo & Gauthier, Daniel & Li, Rui & Flamant, Gilles, 2015. "Solar pyrolysis of beech wood: Effects of pyrolysis parameters on the product distribution and gas product composition," Energy, Elsevier, vol. 93(P2), pages 1648-1657.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Jiaqing & Zhang, Shouyu & Shi, Yue & Zhang, Peizheng & Huang, Dongdong & Lin, Chunyu & Wu, Yuxin, 2022. "Upgrading the wood vinegar prepared from the pyrolysis of biomass wastes by hydrothermal pretreatment," Energy, Elsevier, vol. 244(PA).
    2. Weldekidan, Haftom & Strezov, Vladimir & Li, Rui & Kan, Tao & Town, Graham & Kumar, Ravinder & He, Jing & Flamant, Gilles, 2020. "Distribution of solar pyrolysis products and product gas composition produced from agricultural residues and animal wastes at different operating parameters," Renewable Energy, Elsevier, vol. 151(C), pages 1102-1109.
    3. Rahman, M.A., 2020. "Valorizing of weeds algae through the solar assisted pyrolysis: Effects of dependable parameters on yields and characterization of products," Renewable Energy, Elsevier, vol. 147(P1), pages 937-946.
    4. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    5. Tamer Y. A. Fahmy & Yehia Fahmy & Fardous Mobarak & Mohamed El-Sakhawy & Ragab E. Abou-Zeid, 2020. "Biomass pyrolysis: past, present, and future," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 17-32, January.
    6. Zeaiter, Joseph & Azizi, Fouad & Lameh, Mohammad & Milani, Dia & Ismail, Hamza Y. & Abbas, Ali, 2018. "Waste tire pyrolysis using thermal solar energy: An integrated approach," Renewable Energy, Elsevier, vol. 123(C), pages 44-51.
    7. Yang, Qiushuang & Mašek, Ondřej & Zhao, Ling & Nan, Hongyan & Yu, Shitong & Yin, Jianxiang & Li, Zhaopeng & Cao, Xinde, 2021. "Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation," Applied Energy, Elsevier, vol. 282(PB).
    8. Jin Wu & Jiangjiang Wang & Jing Wu & Chaofan Ma, 2019. "Exergy and Exergoeconomic Analysis of a Combined Cooling, Heating, and Power System Based on Solar Thermal Biomass Gasification," Energies, MDPI, vol. 12(12), pages 1-19, June.
    9. Toby Green & Opio Innocent Miria & Rolf Crook & Andrew Ross, 2020. "Energy Calculator for Solar Processing of Biomass with Application to Uganda," Energies, MDPI, vol. 13(6), pages 1-14, March.
    10. Wang, Jiangjiang & Ma, Chaofan & Wu, Jing, 2019. "Thermodynamic analysis of a combined cooling, heating and power system based on solar thermal biomass gasification☆," Applied Energy, Elsevier, vol. 247(C), pages 102-115.
    11. Chintala, Venkateswarlu, 2018. "Production, upgradation and utilization of solar assisted pyrolysis fuels from biomass – A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 120-130.
    12. Weldekidan, Haftom & Strezov, Vladimir & Town, Graham, 2018. "Review of solar energy for biofuel extraction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 184-192.
    13. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    14. Zeng, Kuo & Soria, José & Gauthier, Daniel & Mazza, Germán & Flamant, Gilles, 2016. "Modeling of beech wood pellet pyrolysis under concentrated solar radiation," Renewable Energy, Elsevier, vol. 99(C), pages 721-729.
    15. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    16. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Kuo & Soria, José & Gauthier, Daniel & Mazza, Germán & Flamant, Gilles, 2016. "Modeling of beech wood pellet pyrolysis under concentrated solar radiation," Renewable Energy, Elsevier, vol. 99(C), pages 721-729.
    2. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    3. Chintala, Venkateswarlu, 2018. "Production, upgradation and utilization of solar assisted pyrolysis fuels from biomass – A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 120-130.
    4. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    5. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    6. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    7. Collazo, Joaquín & Pazó, José Antonio & Granada, Enrique & Saavedra, Ángeles & Eguía, Pablo, 2012. "Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis," Energy, Elsevier, vol. 45(1), pages 746-752.
    8. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    9. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Granada, Enrique & Míguez, J.L. & Febrero, Lara & Collazo, Joaquín & Eguía, Pablo, 2013. "Development of an experimental technique for oil recovery during biomass pyrolysis," Renewable Energy, Elsevier, vol. 60(C), pages 179-184.
    11. Rahman, M.A., 2020. "Valorizing of weeds algae through the solar assisted pyrolysis: Effects of dependable parameters on yields and characterization of products," Renewable Energy, Elsevier, vol. 147(P1), pages 937-946.
    12. Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.
    13. Song, Gongxiang & Huang, Dexin & Li, Hanjian & Wang, Xuepeng & Ren, Qiangqiang & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2022. "Pyrolysis reaction mechanism of typical Chinese agriculture and forest waste pellets at high heating rates based on the photo-thermal TGA," Energy, Elsevier, vol. 244(PB).
    14. Zeng, Kuo & Gauthier, Daniel & Li, Rui & Flamant, Gilles, 2017. "Combined effects of initial water content and heating parameters on solar pyrolysis of beech wood," Energy, Elsevier, vol. 125(C), pages 552-561.
    15. Peters, Jens F. & Banks, Scott W. & Bridgwater, Anthony V. & Dufour, Javier, 2017. "A kinetic reaction model for biomass pyrolysis processes in Aspen Plus," Applied Energy, Elsevier, vol. 188(C), pages 595-603.
    16. Gorugantu SriBala & Hans‐Heinrich Carstensen & Kevin M. Van Geem & Guy B. Marin, 2019. "Measuring biomass fast pyrolysis kinetics: State of the art," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(2), March.
    17. Granada, E. & Eguía, P. & Vilan, J.A. & Comesaña, J.A. & Comesaña, R., 2012. "FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process," Renewable Energy, Elsevier, vol. 41(C), pages 416-421.
    18. Görling, Martin & Larsson, Mårten & Alvfors, Per, 2013. "Bio-methane via fast pyrolysis of biomass," Applied Energy, Elsevier, vol. 112(C), pages 440-447.
    19. Hasan, M.M. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Jahirul, M.I., 2021. "Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Isa, Khairuddin Md & Abdullah, Tuan Amran Tuan & Ali, Umi Fazara Md, 2018. "Hydrogen donor solvents in liquefaction of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1259-1268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:89:y:2016:i:c:p:27-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.