IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipas0360544221028802.html
   My bibliography  Save this article

Upgrading the wood vinegar prepared from the pyrolysis of biomass wastes by hydrothermal pretreatment

Author

Listed:
  • Xu, Jiaqing
  • Zhang, Shouyu
  • Shi, Yue
  • Zhang, Peizheng
  • Huang, Dongdong
  • Lin, Chunyu
  • Wu, Yuxin

Abstract

Hydrothermal pretreatment (HT) is an effective method to upgrade biochar pellets, while little attention is paid to wood vinegar (WV), the byproduct of biochar pellets production. Therefore, Chinese fir sawdust (FS) and cotton stalk (CS) were hydrothermally pretreated first at 180–280 °C and then pyrolyzed at 350 °C in the study. The effect of hydrothermal pretreatment on the properties of biomass was evaluated by the Van Soest method and thermogravimetric method. The yield, pH, density, and composition of WV were analyzed. The results showed that hemicellulose and cellulose were completely decomposed at HT temperatures of 230 °C and 280 °C respectively. The removal of hemicellulose and the enrichment of cellulose and lignin in the samples pretreated before 230 °C result in a higher density and lower pH of WV, while the yield only increases before 200 °C. Compared with CS samples, the higher content and reactivity of cellulose, especially amorphous cellulose, and lignin in FS samples results in the higher yield of the organic compounds in FSWV. With HT temperature increasing to 230 °C, the content and yield of acids in FSWV/CSWV shows a declining trend, and the content and yield of phenols, ketones, and aldehydes increase. HT pretreatment below 230 °C can upgrade WV.

Suggested Citation

  • Xu, Jiaqing & Zhang, Shouyu & Shi, Yue & Zhang, Peizheng & Huang, Dongdong & Lin, Chunyu & Wu, Yuxin, 2022. "Upgrading the wood vinegar prepared from the pyrolysis of biomass wastes by hydrothermal pretreatment," Energy, Elsevier, vol. 244(PA).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221028802
    DOI: 10.1016/j.energy.2021.122631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221028802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-Arias, J. & Gómez, X. & González-Castaño, M. & Sánchez, M.E. & Rosas, J.G. & Cara-Jiménez, J., 2022. "Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning," Energy, Elsevier, vol. 238(PC).
    2. Li, Rui & Zeng, Kuo & Soria, José & Mazza, Germán & Gauthier, Daniel & Rodriguez, Rosa & Flamant, Gilles, 2016. "Product distribution from solar pyrolysis of agricultural and forestry biomass residues," Renewable Energy, Elsevier, vol. 89(C), pages 27-35.
    3. Ji, Qiang & Zhang, Dayong, 2019. "How much does financial development contribute to renewable energy growth and upgrading of energy structure in China?," Energy Policy, Elsevier, vol. 128(C), pages 114-124.
    4. Li, Jingjing & Dou, Binlin & Zhang, Hua & Zhang, Hao & Chen, Haisheng & Xu, Yujie & Wu, Chunfei, 2021. "Pyrolysis characteristics and non-isothermal kinetics of waste wood biomass," Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsagan, Zahwa A. & Ali, Rehab M. & El-Naggar, Mohamed A. & El-Ashtoukhy, E.-S.Z. & AbdElhafez, Sara E., 2023. "New perspectives for maximizing sustainable bioethanol production from corn stover," Renewable Energy, Elsevier, vol. 209(C), pages 608-618.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    2. Lin, Boqiang & Okoye, Jude O., 2023. "Towards renewable energy generation and low greenhouse gas emission in high-income countries: Performance of financial development and governance," Renewable Energy, Elsevier, vol. 215(C).
    3. Skare, Marinko & Gavurova, Beata & Sinkovic, Dean, 2023. "Regional aspects of financial development and renewable energy: A cross-sectional study in 214 countries," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1142-1157.
    4. Shen, Yiran & Liu, Chang & Sun, Xiaolei & Guo, Kun, 2023. "Investor sentiment and the Chinese new energy stock market: A risk–return perspective," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 395-408.
    5. Wu, Fei & Zhang, Dayong & Ji, Qiang, 2021. "Systemic risk and financial contagion across top global energy companies," Energy Economics, Elsevier, vol. 97(C).
    6. Yi-Bin Chiu & Wenwen Zhang, 2023. "Moderating Effect of Financial Development on the Relationship between Renewable Energy and Carbon Emissions," Energies, MDPI, vol. 16(3), pages 1-18, February.
    7. Huang, Guobin & Zhang, Jie & Yu, Jian & Shi, Xunpeng, 2020. "Impact of transportation infrastructure on industrial pollution in Chinese cities: A spatial econometric analysis," Energy Economics, Elsevier, vol. 92(C).
    8. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2020. "Do renewable energy production spillovers matter in the EU?," Renewable Energy, Elsevier, vol. 150(C), pages 786-796.
    9. Ding, Yuanyi, 2023. "Does natural resources cause sustainable financial development or resources curse? Evidence from group of seven economies," Resources Policy, Elsevier, vol. 81(C).
    10. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
    11. Wang, Yu & Gu, Jibao & Wu, Jianlin, 2020. "Explaining local residents’ acceptance of rebuilding nuclear power plants: The roles of perceived general benefit and perceived local benefit," Energy Policy, Elsevier, vol. 140(C).
    12. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    13. Wu, Shu & Han, Hongyun, 2022. "Energy transition, intensity growth, and policy evolution: Evidence from rural China," Energy Economics, Elsevier, vol. 105(C).
    14. Wang, Feipeng & Wong, Wing-Keung & Wang, Zheng & Albasher, Gadah & Alsultan, Nouf & Fatemah, Ambreen, 2023. "Emerging pathways to sustainable economic development: An interdisciplinary exploration of resource efficiency, technological innovation, and ecosystem resilience in resource-rich regions," Resources Policy, Elsevier, vol. 85(PA).
    15. Liu, Chang & Liu, Linlin & Zhang, Dayong & Fu, Jiasha, 2021. "How does the capital market respond to policy shocks? Evidence from listed solar photovoltaic companies in China," Energy Policy, Elsevier, vol. 151(C).
    16. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    17. Mingwen Chen & RongJia Chen & Shiyong Zheng & Biqing Li, 2023. "Green Investment, Technological Progress, and Green Industrial Development: Implications for Sustainable Development," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    18. Duan Ji & Yuyu Liu & Lin Zhang & Jingjing An & Wenyan Sun, 2020. "Green Social Responsibility and Company Financing Cost-Based on Empirical Studies of Listed Companies in China," Sustainability, MDPI, vol. 12(15), pages 1-16, August.
    19. Opeyemi, Akinyemi & Uchenna, Efobi & Simplice, Asongu & Evans, Osabuohein, 2019. "Renewable energy, trade performance and the conditional role of finance and institutional capacity in sub-Sahara African countries," Energy Policy, Elsevier, vol. 132(C), pages 490-498.
    20. Shiwen Liu & Hongyuan Li, 2020. "Does Financial Development Increase Urban Electricity Consumption? Evidence from Spatial and Heterogeneity Analysis," Sustainability, MDPI, vol. 12(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221028802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.