IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i1p142-157.html
   My bibliography  Save this article

Modeling, validation and time-dependent simulation of the first large passive building in Romania

Author

Listed:
  • Badescu, Viorel
  • Laaser, Nadine
  • Crutescu, Ruxandra
  • Crutescu, Marin
  • Dobrovicescu, Alexandru
  • Tsatsaronis, George

Abstract

A passive house is a cost-efficient building that can manage throughout the heating period, due to its specific construction design, with more than ten times less heat energy than the same building designed to standards presently applicable across Europe. This paper describes the thermal performance during the cold season of the AMVIC passive office building, located in Bragadiru, a small Romanian town 10 km south of Bucharest. A detailed description of the building structure and the HVAC equipment is made. A time-dependent model (PHTT – Passive House Thermal Transients) is developed and used. Models validation is performed by comparing the outputs with results by the Passive House Planning Package (PHPP) developed by Passive House Institute of Darmstadt. Two renewable energy sources are used during the cold season within the building. First, passive solar heating is provided by the large window on the façade oriented south. Second, a ground heat exchanger (GHE) increases the fresh air temperature. Results show that the GHE is the most useful and reliable renewable energy source from November to March, providing heat during the day and the heat flux increases when the weather is colder. The passive solar heating system provides a large part of the heating energy during the cold season. Classical building heating is necessary mainly during December–February.

Suggested Citation

  • Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra & Crutescu, Marin & Dobrovicescu, Alexandru & Tsatsaronis, George, 2011. "Modeling, validation and time-dependent simulation of the first large passive building in Romania," Renewable Energy, Elsevier, vol. 36(1), pages 142-157.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:1:p:142-157
    DOI: 10.1016/j.renene.2010.06.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110002715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.06.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badescu, Viorel, 2007. "Simple and accurate model for the ground heat exchanger of a passive house," Renewable Energy, Elsevier, vol. 32(5), pages 845-855.
    2. Peterkin, Neville, 2009. "Rewards for passive solar design in the Building Code of Australia," Renewable Energy, Elsevier, vol. 34(2), pages 440-443.
    3. Yezioro, Abraham, 2009. "A knowledge based CAAD system for passive solar architecture," Renewable Energy, Elsevier, vol. 34(3), pages 769-779.
    4. Badescu, Viorel, 2007. "Economic aspects of using ground thermal energy for passive house heating," Renewable Energy, Elsevier, vol. 32(6), pages 895-903.
    5. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra, 2010. "Warm season cooling requirements for passive buildings in Southeastern Europe (Romania)," Energy, Elsevier, vol. 35(8), pages 3284-3300.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shilei Lu & Ran Wang & Shaoqun Zheng, 2017. "Passive Optimization Design Based on Particle Swarm Optimization in Rural Buildings of the Hot Summer and Warm Winter Zone of China," Sustainability, MDPI, vol. 9(12), pages 1-30, December.
    2. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
    3. Colclough, Shane & Griffiths, Philip, 2016. "Financial analysis of an installed small scale seasonal thermal energy store," Renewable Energy, Elsevier, vol. 86(C), pages 422-428.
    4. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    5. Yaolin Lin & Shiquan Zhou & Wei Yang & Chun-Qing Li, 2018. "Design Optimization Considering Variable Thermal Mass, Insulation, Absorptance of Solar Radiation, and Glazing Ratio Using a Prediction Model and Genetic Algorithm," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    6. Chen, Xi & Yang, Hongxing & Lu, Lin, 2015. "A comprehensive review on passive design approaches in green building rating tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1425-1436.
    7. Ancuta C. Abrudan & Octavian G. Pop & Alexandru Serban & Mugur C. Balan, 2019. "New Perspective on Performances and Limits of Solar Fresh Air Cooling in Different Climatic Conditions," Energies, MDPI, vol. 12(11), pages 1-22, June.
    8. Pop, Octavian G. & Fechete Tutunaru, Lucian & Bode, Florin & Abrudan, Ancuţa C. & Balan, Mugur C., 2018. "Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions," Applied Energy, Elsevier, vol. 212(C), pages 976-996.
    9. Muresan, Adina Ana & Attia, Shady, 2017. "Energy efficiency in the Romanian residential building stock: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 349-363.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bisoniya, Trilok Singh & Kumar, Anil & Baredar, Prashant, 2013. "Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 238-246.
    2. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
    3. Alzoubi, Hussain H. & Alshboul, Abdulsalam A., 2010. "Low energy architecture and solar rights: Restructuring urban regulations, view from Jordan," Renewable Energy, Elsevier, vol. 35(2), pages 333-342.
    4. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    5. Teguh Hady Ariwibowo & Akio Miyara, 2020. "Thermal Characteristics of Slinky-Coil Ground Heat Exchanger with Discrete Double Inclined Ribs," Resources, MDPI, vol. 9(9), pages 1-17, August.
    6. Lekhal, Mohammed Cherif & Benzaama, Mohammed-Hichem & Kindinis, Andrea & Mokhtari, Abderahmane-Mejedoub & Belarbi, Rafik, 2021. "Effect of geo-climatic conditions and pipe material on heating performance of earth-air heat exchangers," Renewable Energy, Elsevier, vol. 163(C), pages 22-40.
    7. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
    8. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    9. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    10. de Moel, Monique & Bach, Peter M. & Bouazza, Abdelmalek & Singh, Rao M. & Sun, JingLiang O., 2010. "Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2683-2696, December.
    11. Badescu, Viorel & Isvoranu, Dragos, 2011. "Pneumatic and thermal design procedure and analysis of earth-to-air heat exchangers of registry type," Applied Energy, Elsevier, vol. 88(4), pages 1266-1280, April.
    12. Georges, L. & Massart, C. & Van Moeseke, G. & De Herde, A., 2012. "Environmental and economic performance of heating systems for energy-efficient dwellings: Case of passive and low-energy single-family houses," Energy Policy, Elsevier, vol. 40(C), pages 452-464.
    13. Jimin Kim & Taehoon Hong & Myeongsoo Chae & Choongwan Koo & Jaemin Jeong, 2015. "An Environmental and Economic Assessment for Selecting the Optimal Ground Heat Exchanger by Considering the Entering Water Temperature," Energies, MDPI, vol. 8(8), pages 1-25, July.
    14. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Domenico Laforgia, 2014. "Computational Fluid Dynamic Modeling of Horizontal Air-Ground Heat Exchangers (HAGHE) for HVAC Systems," Energies, MDPI, vol. 7(12), pages 1-18, December.
    15. Ozgener, Leyla, 2011. "A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4483-4490.
    16. Yıldız, Yusuf & Arsan, Zeynep Durmuş, 2011. "Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates," Energy, Elsevier, vol. 36(7), pages 4287-4296.
    17. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
    18. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Bahadori, Alireza & Zendehboudi, Sohrab & Zahedi, Gholamreza, 2013. "A review of geothermal energy resources in Australia: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 29-34.
    20. Audenaert, A. & De Cleyn, S.H. & Vankerckhove, B., 2008. "Economic analysis of passive houses and low-energy houses compared with standard houses," Energy Policy, Elsevier, vol. 36(1), pages 47-55, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:1:p:142-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.