IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp422-428.html
   My bibliography  Save this article

Financial analysis of an installed small scale seasonal thermal energy store

Author

Listed:
  • Colclough, Shane
  • Griffiths, Philip

Abstract

The financial viability of an installed solar heating system incorporating a Seasonal Thermal Energy Store (STES) for a house constructed to the low-energy Passivhaus standard is analysed. Details are provided of system costs and the recorded performance for the installation which is located in Galway, Ireland, a location which experiences a Temperate Maritime Climate. Using these figures, a financial Life Cycle Analysis has been undertaken to determine the cost effectiveness of the system in providing space heating and domestic hot water.

Suggested Citation

  • Colclough, Shane & Griffiths, Philip, 2016. "Financial analysis of an installed small scale seasonal thermal energy store," Renewable Energy, Elsevier, vol. 86(C), pages 422-428.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:422-428
    DOI: 10.1016/j.renene.2015.08.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra & Crutescu, Marin & Dobrovicescu, Alexandru & Tsatsaronis, George, 2011. "Modeling, validation and time-dependent simulation of the first large passive building in Romania," Renewable Energy, Elsevier, vol. 36(1), pages 142-157.
    2. Ahern, Ciara & Griffiths, Philip & O'Flaherty, Micheál, 2013. "State of the Irish housing stock—Modelling the heat losses of Ireland's existing detached rural housing stock & estimating the benefit of thermal retrofit measures on this stock," Energy Policy, Elsevier, vol. 55(C), pages 139-151.
    3. Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.
    4. Persson, Johannes & Westermark, Mats, 2013. "Low-energy buildings and seasonal thermal energy storages from a behavioral economics perspective," Applied Energy, Elsevier, vol. 112(C), pages 975-980.
    5. Leckner, Mitchell & Zmeureanu, Radu, 2011. "Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem," Applied Energy, Elsevier, vol. 88(1), pages 232-241, January.
    6. Yohanis, Y.G & Norton, B, 2000. "A comparison of the analysis of the useful net solar gain for space heating, zone-by-zone and for a whole-building," Renewable Energy, Elsevier, vol. 19(3), pages 435-442.
    7. Schnieders, Jurgen & Hermelink, Andreas, 2006. "CEPHEUS results: measurements and occupants' satisfaction provide evidence for Passive Houses being an option for sustainable building," Energy Policy, Elsevier, vol. 34(2), pages 151-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    2. Chang, Chun & Wu, Zhiyong & Navarro, Helena & Li, Chuan & Leng, Guanghui & Li, Xiaoxia & Yang, Ming & Wang, Zhifeng & Ding, Yulong, 2017. "Comparative study of the transient natural convection in an underground water pit thermal storage," Applied Energy, Elsevier, vol. 208(C), pages 1162-1173.
    3. Poppi, Stefano & Bales, Chris & Heinz, Andreas & Hengel, Franz & Chèze, David & Mojic, Igor & Cialani, Catia, 2016. "Analysis of system improvements in solar thermal and air source heat pump combisystems," Applied Energy, Elsevier, vol. 173(C), pages 606-623.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.
    2. Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P. & Hassani, Ferri P. & Amiri, Leyla, 2017. "Performance evaluation of large scale rock-pit seasonal thermal energy storage for application in underground mine ventilation," Applied Energy, Elsevier, vol. 185(P2), pages 1940-1947.
    3. Yvan Dutil & Daniel Rousse & Guillermo Quesada, 2011. "Sustainable Buildings: An Ever Evolving Target," Sustainability, MDPI, vol. 3(2), pages 1-22, February.
    4. Dannemand, Mark & Johansen, Jakob Berg & Kong, Weiqiang & Furbo, Simon, 2016. "Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing supercooling," Applied Energy, Elsevier, vol. 177(C), pages 591-601.
    5. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    6. Poppi, Stefano & Bales, Chris & Heinz, Andreas & Hengel, Franz & Chèze, David & Mojic, Igor & Cialani, Catia, 2016. "Analysis of system improvements in solar thermal and air source heat pump combisystems," Applied Energy, Elsevier, vol. 173(C), pages 606-623.
    7. Dannemand, Mark & Dragsted, Janne & Fan, Jianhua & Johansen, Jakob Berg & Kong, Weiqiang & Furbo, Simon, 2016. "Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures," Applied Energy, Elsevier, vol. 169(C), pages 72-80.
    8. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    9. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    10. Molinari, Marco & Anund Vogel, Jonas & Rolando, Davide & Lundqvist, Per, 2023. "Using living labs to tackle innovation bottlenecks: the KTH Live-In Lab case study," Applied Energy, Elsevier, vol. 338(C).
    11. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    12. Goggins, Gary & Rau, Henrike & Moran, Paul & Fahy, Frances & Goggins, Jamie, 2022. "The role of culture in advancing sustainable energy policy and practice," Energy Policy, Elsevier, vol. 167(C).
    13. Allard, I. & Olofsson, T. & Hassan, O.A.B., 2013. "Methods for energy analysis of residential buildings in Nordic countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 306-318.
    14. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
    15. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    16. Forde, Joe & Hopfe, Christina J. & McLeod, Robert S. & Evins, Ralph, 2020. "Temporal optimization for affordable and resilient Passivhaus dwellings in the social housing sector," Applied Energy, Elsevier, vol. 261(C).
    17. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    18. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    20. Radhi, Hassan, 2012. "Trade-off between environmental and economic implications of PV systems integrated into the UAE residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2468-2474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:422-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.