IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i4p1064-1077.html
   My bibliography  Save this article

Optimal control of hydroelectric facility incorporating pump storage

Author

Listed:
  • Zhao, Guangzhi
  • Davison, Matt

Abstract

We consider a simple model of a pump-assisted hydroelectric facility operating in a market with time-varying but deterministic power prices and constant water inflows. The engineering details of the facility are described by a model containing several parameters. We present an algorithm for optimizing first the energy and then the profit produced by these plants. This algorithm allows us to describe the relationships between control trajectory and time, and between inflow and price. Remarkably, we see that under some reasonable choices of facility parameters and for power prices that are not extremely variable, the optimal profit operation of these facilities is not too different from their optimal energy operation, and the control is less affected by the price as the inflow rate increases.

Suggested Citation

  • Zhao, Guangzhi & Davison, Matt, 2009. "Optimal control of hydroelectric facility incorporating pump storage," Renewable Energy, Elsevier, vol. 34(4), pages 1064-1077.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:4:p:1064-1077
    DOI: 10.1016/j.renene.2008.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810800284X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Brian K. Edwards & Silvio J. Flaim & Richard E. Howitt, 1999. "Optimal Provision of Hydroelectric Power under Environmental and Regulatory Constraints," Land Economics, University of Wisconsin Press, vol. 75(2), pages 267-283.
    2. Chatterjee, Bishu & Howitt, Richard E. & Sexton, Richard J., 1998. "The Optimal Joint Provision of Water for Irrigation and Hydropower," Journal of Environmental Economics and Management, Elsevier, vol. 36(3), pages 295-313, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makhdoomi, Sina & Askarzadeh, Alireza, 2020. "Daily performance optimization of a grid-connected hybrid system composed of photovoltaic and pumped hydro storage (PV/PHS)," Renewable Energy, Elsevier, vol. 159(C), pages 272-285.
    2. Steffen, Bjarne & Weber, Christoph, 2016. "Optimal operation of pumped-hydro storage plants with continuous time-varying power prices," European Journal of Operational Research, Elsevier, vol. 252(1), pages 308-321.
    3. Anton A. Shardin & Michaela Szolgyenyi, 2016. "Optimal Control of an Energy Storage Facility Under a Changing Economic Environment and Partial Information," Papers 1602.04662, arXiv.org, revised Apr 2016.
    4. Mahmoudimehr, Javad & Sebghati, Parvin, 2019. "A novel multi-objective Dynamic Programming optimization method: Performance management of a solar thermal power plant as a case study," Energy, Elsevier, vol. 168(C), pages 796-814.
    5. Picarelli, Athena & Vargiolu, Tiziano, 2021. "Optimal management of pumped hydroelectric production with state constrained optimal control," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    6. Shabani, Masoume & Mahmoudimehr, Javad, 2019. "Influence of climatological data records on design of a standalone hybrid PV-hydroelectric power system," Renewable Energy, Elsevier, vol. 141(C), pages 181-194.
    7. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    8. Roxana Dumitrescu & Redouane Silvente & Peter Tankov, 2024. "Price impact and long-term profitability of energy storage," Papers 2410.12495, arXiv.org.
    9. Mahmoudimehr, Javad & Shabani, Masoume, 2018. "Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran," Renewable Energy, Elsevier, vol. 115(C), pages 238-251.
    10. Shaima A. Alnaqbi & Shamma Alasad & Haya Aljaghoub & Abdul Hai Alami & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2022. "Applicability of Hydropower Generation and Pumped Hydro Energy Storage in the Middle East and North Africa," Energies, MDPI, vol. 15(7), pages 1-27, March.
    11. Rayamajhee, Veeshan & Joshi, Aakrit, 2018. "Economic trade-offs between hydroelectricity production and environmental externalities: A case for local externality mitigation fund," Renewable Energy, Elsevier, vol. 129(PA), pages 237-244.
    12. Ware, Antony, 2018. "Reliability-constrained hydropower valuation," Energy Policy, Elsevier, vol. 118(C), pages 633-641.
    13. Anton A. Shardin & Michaela Szölgyenyi, 2016. "Optimal Control Of An Energy Storage Facility Under A Changing Economic Environment And Partial Information," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-27, June.
    14. Shabani, Masoume & Dahlquist, Erik & Wallin, Fredrik & Yan, Jinyue, 2020. "Techno-economic comparison of optimal design of renewable-battery storage and renewable micro pumped hydro storage power supply systems: A case study in Sweden," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Ambec & Joseph Doucet, 2003. "Decentralizing hydro power production," Canadian Journal of Economics, Canadian Economics Association, vol. 36(3), pages 587-607, August.
    2. Bielsa, Jorge & Duarte, Rosa, 2003. "Modelling water resource allocation: a case study on agriculture versus hydropower production," MPRA Paper 36923, University Library of Munich, Germany.
    3. Rayamajhee, Veeshan & Joshi, Aakrit, 2018. "Economic trade-offs between hydroelectricity production and environmental externalities: A case for local externality mitigation fund," Renewable Energy, Elsevier, vol. 129(PA), pages 237-244.
    4. Alexandre Stamford da Silva & Fernando Campello de Souza, 2008. "The economics of water resources for the generation of electricity and other uses," Annals of Operations Research, Springer, vol. 164(1), pages 41-61, November.
    5. Mustafa Sahin Dogan & Josue Medellin-Azuara & Jay R. Lund, 2024. "Hydropower Reservoir Optimization with Solar Generation-Changed Energy Prices in California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 2135-2153, April.
    6. Amine Chekireb & Julio Goncalves & Hubert Stahn & Agnes Tomini, 2021. "Private exploitation of the North-Western Sahara Aquifer System," Working Papers halshs-03457972, HAL.
    7. Crampes, Claude & Moreaux, Michel, 2008. "Pumping Water to Compete in Electricity Markets," IDEI Working Papers 507, Institut d'Économie Industrielle (IDEI), Toulouse.
    8. Kosnik, Lea, 2008. "Consolidation and ownership trends of nonfederal hydropower generating assets, 1980-2003," Energy Economics, Elsevier, vol. 30(3), pages 715-731, May.
    9. Steffen, Bjarne, 2012. "Prospects for pumped-hydro storage in Germany," Energy Policy, Elsevier, vol. 45(C), pages 420-429.
    10. Bjarne Steffen, 2011. "Prospects for pumped-hydro storage in Germany," EWL Working Papers 1107, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Dec 2011.
    11. Scott McDonald & Arja & Lindsay Chant, 2004. "The Role of the 1994-95 Coffee Boom in Uganda's Recovery," Working Papers 2004011, The University of Sheffield, Department of Economics, revised Aug 2004.
    12. Lea Kosnik, 2010. "Balancing Environmental Protection and Energy Production in the Federal Hydropower Licensing Process," Land Economics, University of Wisconsin Press, vol. 86(3).
    13. Sichilalu, Sam & Wamalwa, Fhazhil & Akinlabi, Esther T., 2019. "Optimal control of wind-hydrokinetic pumpback hydropower plant constrained with ecological water flows," Renewable Energy, Elsevier, vol. 138(C), pages 54-69.
    14. Cristobal Gallego-Castillo & Marta Victoria, 2020. "Improving Energy Transition Analysis Tool through Hydropower Statistical Modelling," Energies, MDPI, vol. 14(1), pages 1-17, December.
    15. H. X. Phu & H. G. Bock, 2013. "A Common Regularization for Three Reservoir Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 199-228, April.
    16. Niu, Shilei & Insley, Margaret, 2013. "On the economics of ramping rate restrictions at hydro power plants: Balancing profitability and environmental costs," Energy Economics, Elsevier, vol. 39(C), pages 39-52.
    17. Claude Crampes & Michel Moreaux, 2009. "Pumped storage and energy saving," LERNA Working Papers 09.17.293, LERNA, University of Toulouse.
    18. Niu, Shilei & Insley, Margaret, 2016. "An options pricing approach to ramping rate restrictions at hydro power plants," Journal of Economic Dynamics and Control, Elsevier, vol. 63(C), pages 25-52.
    19. Debnath, Deepayan & Stoecker, Arthur L. & Boyer, Tracy A. & Sanders, Larry D., 2011. "Integrated Reservoir Management under Stochastic Conditions," 2011 Annual Meeting, June 29-July 1, 2011, Banff, Alberta,Canada 108178, Western Agricultural Economics Association.
    20. KLAUS ABBINK & MOLLER, Lars Christian & SARAH O'HARA, 2005. "The Syr Darya River Conflict: An Experimental Case Study," Discussion Papers 2005-14, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:4:p:1064-1077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.