IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i13p2129-2146.html
   My bibliography  Save this article

Feasibility of hydrogen corridors between the EU and its neighbouring countries

Author

Listed:
  • Wietschel, Martin
  • Hasenauer, Ulrike

Abstract

The debate-taking place at present about a future European energy system focuses on hydrogen as a potential future energy carrier. Hydrogen corridors offer, among other things, the possibilities of coping with the energy resource limitations for hydrogen production in the EU25 and improving energy supply security. This study deals with the assessment of economically optimal hydrogen corridors between the EU25 and neighbouring countries using consistent hydrogen scenarios, cost and potential calculations, the identification of barriers and policy recommendations.

Suggested Citation

  • Wietschel, Martin & Hasenauer, Ulrike, 2007. "Feasibility of hydrogen corridors between the EU and its neighbouring countries," Renewable Energy, Elsevier, vol. 32(13), pages 2129-2146.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:13:p:2129-2146
    DOI: 10.1016/j.renene.2006.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106003363
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hammerschlag, Roel & Mazza, Patrick, 2005. "Questioning hydrogen," Energy Policy, Elsevier, vol. 33(16), pages 2039-2043, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ephraim Bonah Agyekum & Jeffrey Dankwa Ampah & Solomon Eghosa Uhunamure & Karabo Shale & Ifeoma Prisca Onyenegecha & Vladimir Ivanovich Velkin, 2023. "Can Africa Serve Europe with Hydrogen Energy from Its Renewables?—Assessing the Economics of Shipping Hydrogen and Hydrogen Carriers to Europe from Different Parts of the Continent," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    2. Chang, Hyun Joon & Kim, In Sue & Kim, Dong Wook & Yang, Taeyong, 2013. "Business potential of sustainable energy in Korea: Hybrid method of various feasibility studies from path dependence and path evolution perspective," Renewable Energy, Elsevier, vol. 50(C), pages 464-475.
    3. Stiller, Christoph & Svensson, Ann Mari & Møller-Holst, Steffen & Bünger, Ulrich & Espegren, Kari Aamodt & Holm, Øystein Bindesbøll & Tomasgård, Asgeir, 2008. "Options for CO2-lean hydrogen export from Norway to Germany," Energy, Elsevier, vol. 33(11), pages 1623-1633.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nocera, Silvio & Cavallaro, Federico, 2016. "The competitiveness of alternative transport fuels for CO2 emissions," Transport Policy, Elsevier, vol. 50(C), pages 1-14.
    2. Krumdieck, Susan & Hamm, Andreas, 2009. "Strategic analysis methodology for energy systems with remote island case study," Energy Policy, Elsevier, vol. 37(9), pages 3301-3313, September.
    3. Greenblatt, Jeffery B., 2015. "Modeling California policy impacts on greenhouse gas emissions," Energy Policy, Elsevier, vol. 78(C), pages 158-172.
    4. Blanchette Jr., Stephen, 2008. "A hydrogen economy and its impact on the world as we know it," Energy Policy, Elsevier, vol. 36(2), pages 522-530, February.
    5. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    6. Murphy, Jerry D. & Browne, James & Allen, Eoin & Gallagher, Cathal, 2013. "The resource of biomethane, produced via biological, thermal and electrical routes, as a transport biofuel," Renewable Energy, Elsevier, vol. 55(C), pages 474-479.
    7. Wietschel, Martin & Hasenauer, Ulrike & de Groot, Arend, 2006. "Development of European hydrogen infrastructure scenarios--CO2 reduction potential and infrastructure investment," Energy Policy, Elsevier, vol. 34(11), pages 1284-1298, July.
    8. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    9. Duke, Mike & Andrews, Deborah & Anderson, Timothy, 2009. "The feasibility of long range battery electric cars in New Zealand," Energy Policy, Elsevier, vol. 37(9), pages 3455-3462, September.
    10. Dougherty, William & Kartha, Sivan & Rajan, Chella & Lazarus, Michael & Bailie, Alison & Runkle, Benjamin & Fencl, Amanda, 2009. "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA," Energy Policy, Elsevier, vol. 37(1), pages 56-67, January.
    11. Wee, Jung-Ho, 2010. "Contribution of fuel cell systems to CO2 emission reduction in their application fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 735-744, February.
    12. Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
    13. Page, Shannon & Krumdieck, Susan, 2009. "System-level energy efficiency is the greatest barrier to development of the hydrogen economy," Energy Policy, Elsevier, vol. 37(9), pages 3325-3335, September.
    14. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    15. Sdanghi, G. & Maranzana, G. & Celzard, A. & Fierro, V., 2019. "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 150-170.
    16. Converse, Alvin O., 2006. "The impact of large-scale energy storage requirements on the choice between electricity and hydrogen as the major energy carrier in a non-fossil renewables-only scenario," Energy Policy, Elsevier, vol. 34(18), pages 3374-3376, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:13:p:2129-2146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.