IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i8p1221-1240.html
   My bibliography  Save this article

MEP-type distribution function: a better alternative to Weibull function for wind speed distributions

Author

Listed:
  • Li, Meishen
  • Li, Xianguo

Abstract

The probabilistic distribution of wind speed is one of the important wind characteristics for the assessment of wind energy potential and for the performance of wind energy conversion systems, as well as for the structural and environmental design and analysis. In this study, an exponential family of distribution functions has been developed for the description of the probabilistic distribution of wind speed, and comparison with the wind speed data taken from different sources and measured at different geographical locations in the world has been made. This family of distributions is developed by introducing a pre-exponential term to the theoretical distribution derived from the maximum entropy principle (MEP). The statistical analysis parameter based on the wind power density is used as the suitability judgement for the distribution functions. It is shown that the MEP-type distributions not only agree better with a variety of the measured wind speed data than the conventionally used empirical Weibull distribution, but also can represent the wind power density much more accurately. Therefore, the MEP-type distributions are more suitable for the assessment of the wind energy potential and the performance of wind energy conversion systems.

Suggested Citation

  • Li, Meishen & Li, Xianguo, 2005. "MEP-type distribution function: a better alternative to Weibull function for wind speed distributions," Renewable Energy, Elsevier, vol. 30(8), pages 1221-1240.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:8:p:1221-1240
    DOI: 10.1016/j.renene.2004.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148104004033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2004.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milborrow, David, 1994. "Economics of wind power and comparisons with conventional thermal plant," Renewable Energy, Elsevier, vol. 5(1), pages 692-699.
    2. Celik, A.N., 2003. "Assessing the suitability of wind speed probabilty distribution functions based on wind power density," Renewable Energy, Elsevier, vol. 28(10), pages 1563-1574.
    3. Persaud, Shashi & Flynn, Damian & Fox, Brendan, 1999. "Potential for wind generation on the Guyana coastlands," Renewable Energy, Elsevier, vol. 18(2), pages 175-189.
    4. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    5. Türksoy, Ferdi, 1995. "Investigation of wind power potential at Bozcaada, Turkey," Renewable Energy, Elsevier, vol. 6(8), pages 917-923.
    6. Ackermann, Thomas & Söder, Lennart, 2002. "An overview of wind energy-status 2002," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 67-127.
    7. Algifri, Abdulla H., 1998. "Wind energy potential in Aden-Yemen," Renewable Energy, Elsevier, vol. 13(2), pages 255-260.
    8. Weisser, D, 2003. "A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function," Renewable Energy, Elsevier, vol. 28(11), pages 1803-1812.
    9. Ilinca, Adrian & McCarthy, Ed & Chaumel, Jean-Louis & Rétiveau, Jean-Louis, 2003. "Wind potential assessment of Quebec Province," Renewable Energy, Elsevier, vol. 28(12), pages 1881-1897.
    10. Mayhoub, A.B. & Azzam, A., 1997. "A survey on the assessment of wind energy potential in Egypt," Renewable Energy, Elsevier, vol. 11(2), pages 235-247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiba H. Darwish & Ayman Al-Quraan, 2023. "Machine Learning Classification and Prediction of Wind Estimation Using Artificial Intelligence Techniques and Normal PDF," Sustainability, MDPI, vol. 15(4), pages 1-29, February.
    2. Zhang, Hua & Yu, Yong-Jing & Liu, Zhi-Yuan, 2014. "Study on the Maximum Entropy Principle applied to the annual wind speed probability distribution: A case study for observations of intertidal zone anemometer towers of Rudong in East China Sea," Applied Energy, Elsevier, vol. 114(C), pages 931-938.
    3. Liu, Feng-Jiao & Chen, Pai-Hsun & Kuo, Shyi-Shiun & Su, De-Chuan & Chang, Tian-Pau & Yu, Yu-Hua & Lin, Tsung-Chi, 2011. "Wind characterization analysis incorporating genetic algorithm: A case study in Taiwan Strait," Energy, Elsevier, vol. 36(5), pages 2611-2619.
    4. Liu, Feng Jiao & Chang, Tian Pau, 2011. "Validity analysis of maximum entropy distribution based on different moment constraints for wind energy assessment," Energy, Elsevier, vol. 36(3), pages 1820-1826.
    5. Hu, Qinghua & Wang, Yun & Xie, Zongxia & Zhu, Pengfei & Yu, Daren, 2016. "On estimating uncertainty of wind energy with mixture of distributions," Energy, Elsevier, vol. 112(C), pages 935-962.
    6. Muhammad Shoaib & Imran Siddiqui & Shafiqur Rehman & Saif Ur Rehman & Shamim Khan & Aref Lashin, 2016. "Comparison of Wind Energy Generation Using the Maximum Entropy Principle and the Weibull Distribution Function," Energies, MDPI, vol. 9(10), pages 1-18, October.
    7. Li, Gong & Shi, Jing, 2010. "Application of Bayesian model averaging in modeling long-term wind speed distributions," Renewable Energy, Elsevier, vol. 35(6), pages 1192-1202.
    8. Muhammad Fitra Zambak & Catra Indra Cahyadi & Jufri Helmi & Tengku Machdhalie Sofie & Suwarno Suwarno, 2023. "Evaluation and Analysis of Wind Speed with the Weibull and Rayleigh Distribution Models for Energy Potential Using Three Models," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 427-432, March.
    9. Jiang, Haiyan & Wang, Jianzhou & Wu, Jie & Geng, Wei, 2017. "Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1199-1217.
    10. Luis M. López-Manrique & E. V. Macias-Melo & O. May Tzuc & A. Bassam & K. M. Aguilar-Castro & I. Hernández-Pérez, 2018. "Assessment of Resource and Forecast Modeling of Wind Speed through An Evolutionary Programming Approach for the North of Tehuantepec Isthmus (Cuauhtemotzin, Mexico)," Energies, MDPI, vol. 11(11), pages 1-22, November.
    11. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    2. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    3. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    4. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    5. Wang, Jianzhou & Qin, Shanshan & Jin, Shiqiang & Wu, Jie, 2015. "Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 26-42.
    6. Mostafaeipour, A. & Sedaghat, A. & Dehghan-Niri, A.A. & Kalantar, V., 2011. "Wind energy feasibility study for city of Shahrbabak in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2545-2556, August.
    7. Calif, Rudy & Emilion, Richard & Soubdhan, Ted, 2011. "Classification of wind speed distributions using a mixture of Dirichlet distributions," Renewable Energy, Elsevier, vol. 36(11), pages 3091-3097.
    8. Ahmed, Ahmed Shata, 2010. "Wind energy as a potential generation source at Ras Benas, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2167-2173, October.
    9. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    10. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2006. "Wind power potential and characteristic analysis of the Pearl River Delta region, China," Renewable Energy, Elsevier, vol. 31(6), pages 739-753.
    11. Lashin, Aref & Shata, Ahmed, 2012. "An analysis of wind power potential in Port Said, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6660-6667.
    12. Alkhalidi, Mohamad A. & Al-Dabbous, Shoug Kh. & Neelamani, S. & Aldashti, Hassan A., 2019. "Wind energy potential at coastal and offshore locations in the state of Kuwait," Renewable Energy, Elsevier, vol. 135(C), pages 529-539.
    13. Hepbasli, Arif & Ozgener, Onder, 2004. "A review on the development of wind energy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(3), pages 257-276, June.
    14. Lepore, Antonio & Palumbo, Biagio & Pievatolo, Antonio, 2020. "A Bayesian approach for site-specific wind rose prediction," Renewable Energy, Elsevier, vol. 150(C), pages 691-702.
    15. Sergei Kolesnik & Yossi Rabinovitz & Michael Byalsky & Asher Yahalom & Alon Kuperman, 2023. "Assessment of Wind Speed Statistics in Samaria Region and Potential Energy Production," Energies, MDPI, vol. 16(9), pages 1-35, May.
    16. Ahmed, Ahmed Shata, 2011. "Investigation of wind characteristics and wind energy potential at Ras Ghareb, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2750-2755, August.
    17. Lee, Myung Eun & Kim, Gunwoo & Jeong, Shin-Taek & Ko, Dong Hui & Kang, Keum Seok, 2013. "Assessment of offshore wind energy at Younggwang in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 131-141.
    18. Eskin, N. & Artar, H. & Tolun, S., 2008. "Wind energy potential of Gökçeada Island in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 839-851, April.
    19. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    20. Xydis, G. & Koroneos, C. & Loizidou, M., 2009. "Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in Southern Greece," Applied Energy, Elsevier, vol. 86(11), pages 2411-2420, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:8:p:1221-1240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.