IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148124023462.html
   My bibliography  Save this article

Multi-criteria analysis for energy planning in Ecuador: Enhancing decision-making through comprehensive evaluation

Author

Listed:
  • Godoy, Janeth Carolina
  • Cajo, Ricardo
  • Mesa Estrada, Laura
  • Hamacher, Thomas

Abstract

The growing demand for electricity and the need to mitigate climate change drive the development of renewable energy projects. In some cases, their implementation has led to socio-environmental conflicts. The planning of power plants generally prioritizes technical and economic criteria, while socio-environmental aspects and the involvement of local stakeholders remain limited. In Ecuador, the construction of hydroelectric plants has increased generation capacity but has also triggered conflicts in nearby areas. This study aimed to integrate diverse criteria and stakeholders into Ecuador’s energy infrastructure planning process. A multi-criteria decision analysis (MCDA) was conducted on a portfolio of 101 renewable energy projects planned for the coming years, including 91 hydroelectric, 2 solar photovoltaic, 3 wind, and 5 geothermal projects, with a total capacity of 12,532.45 MW. Nine criteria were analyzed and organized into social, environmental, and technical categories. Social criteria included project perception, job creation, and relocation; environmental criteria covered deforestation, risks to wildlife, and proximity to natural reserves; and technical criteria included plant size, accessibility, and distance to transmission lines. The analysis involved four stakeholder groups—academia, public sector, private sector, and civil society—who expressed their preferences across criteria to ultimately rank the projects from best to worst using the PROMETHEE method. Results showed that energy project planning prioritizes social and environmental criteria over technical ones. Thus, 55 projects (49 hydroelectric, one geothermal, two solar photovoltaic, and three wind) were selected for future construction. In comparison, 42 hydroelectric and four geothermal projects were excluded due to potential impacts on wildlife and forests near protected areas. The methodology suggests that decision-makers should incorporate a multidisciplinary, inclusive, and participatory approach when planning energy infrastructure to ensure it is environmentally sustainable and socially acceptable.

Suggested Citation

  • Godoy, Janeth Carolina & Cajo, Ricardo & Mesa Estrada, Laura & Hamacher, Thomas, 2025. "Multi-criteria analysis for energy planning in Ecuador: Enhancing decision-making through comprehensive evaluation," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023462
    DOI: 10.1016/j.renene.2024.122278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124023462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cameron, Lachlan & van der Zwaan, Bob, 2015. "Employment factors for wind and solar energy technologies: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 160-172.
    2. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    3. Caporale, Diana & Sangiorgio, Valentino & Amodio, Alessandro & De Lucia, Caterina, 2020. "Multi-criteria and focus group analysis for social acceptance of wind energy," Energy Policy, Elsevier, vol. 140(C).
    4. Zambrano-Asanza, S. & Quiros-Tortos, J. & Franco, John F., 2021. "Optimal site selection for photovoltaic power plants using a GIS-based multi-criteria decision making and spatial overlay with electric load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Ina Meyer & Mark W. Sommer, 2016. "Employment effects of renewable energy deployment - a review," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 19(3), pages 217-245.
    6. Georgios Fotis & Christos Dikeakos & Elias Zafeiropoulos & Stylianos Pappas & Vasiliki Vita, 2022. "Scalability and Replicability for Smart Grid Innovation Projects and the Improvement of Renewable Energy Sources Exploitation: The FLEXITRANSTORE Case," Energies, MDPI, vol. 15(13), pages 1-32, June.
    7. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1984. "Prométhée: a new family of outranking methods in multicriteria analysis," ULB Institutional Repository 2013/9305, ULB -- Universite Libre de Bruxelles.
    8. Seddiki, Mohammed & Bennadji, Amar, 2019. "Multi-criteria evaluation of renewable energy alternatives for electricity generation in a residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 101-117.
    9. Maria Panagiotidou & George Xydis & Christopher Koroneos, 2016. "Environmental Siting Framework for Wind Farms: A Case Study in the Dodecanese Islands," Resources, MDPI, vol. 5(3), pages 1-25, July.
    10. Katal, Fatemeh & Fazelpour, Farivar, 2018. "Multi-criteria evaluation and priority analysis of different types of existing power plants in Iran: An optimized energy planning system," Renewable Energy, Elsevier, vol. 120(C), pages 163-177.
    11. Nayyar Hussain Mirjat & Mohammad Aslam Uqaili & Khanji Harijan & Mohd Wazir Mustafa & Md. Mizanur Rahman & M. Waris Ali Khan, 2018. "Multi-Criteria Analysis of Electricity Generation Scenarios for Sustainable Energy Planning in Pakistan," Energies, MDPI, vol. 11(4), pages 1-33, March.
    12. Brynhildur Davidsdottir & Eyjólfur Ingi Ásgeirsson & Reza Fazeli & Ingunn Gunnarsdottir & Jonathan Leaver & Ehsan Shafiei & Hlynur Stefánsson, 2024. "Integrated Energy Systems Modeling with Multi-Criteria Decision Analysis and Stakeholder Engagement for Identifying a Sustainable Energy Transition," Energies, MDPI, vol. 17(17), pages 1-28, August.
    13. Maria Morfoulaki & Jason Papathanasiou, 2021. "Use of PROMETHEE MCDA Method for Ranking Alternative Measures of Sustainable Urban Mobility Planning," Mathematics, MDPI, vol. 9(6), pages 1-15, March.
    14. Chiriboga, Gonzalo & Chamba, Rommel & Garcia, Andrés & Heredia-Fonseca, Roberto & Montero- Calderón, Carolina & Carvajal C, Ghem, 2023. "Useful energy is a meaningful approach to building the decarbonization: A case of study of the Ecuadorian transport sector," Transport Policy, Elsevier, vol. 132(C), pages 76-87.
    15. Cevallos-Sierra, Jaime & Ramos-Martin, Jesús, 2018. "Spatial assessment of the potential of renewable energy: The case of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1154-1165.
    16. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Thiel, Christian, 2015. "Employment effects of renewable electricity deployment. A novel methodology," Energy, Elsevier, vol. 91(C), pages 940-951.
    17. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    18. Hamed Taherdoost, 2017. "Decision Making Using the Analytic Hierarchy Process (AHP); A Step by Step Approach," Post-Print hal-02557320, HAL.
    19. Ole Zelt & Christine Krüger & Marina Blohm & Sönke Bohm & Shahrazad Far, 2019. "Long-Term Electricity Scenarios for the MENA Region: Assessing the Preferences of Local Stakeholders Using Multi-Criteria Analyses," Energies, MDPI, vol. 12(16), pages 1-26, August.
    20. Rojas-Zerpa, Juan C. & Yusta, Jose M., 2015. "Application of multicriteria decision methods for electric supply planning in rural and remote areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 557-571.
    21. Höfer, Tim & Madlener, Reinhard, 2020. "A participatory stakeholder process for evaluating sustainable energy transition scenarios," Energy Policy, Elsevier, vol. 139(C).
    22. Figueira, Jose & Roy, Bernard, 2002. "Determining the weights of criteria in the ELECTRE type methods with a revised Simos' procedure," European Journal of Operational Research, Elsevier, vol. 139(2), pages 317-326, June.
    23. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geovanna Villacreses & Diego Jijón & Juan Francisco Nicolalde & Javier Martínez-Gómez & Franz Betancourt, 2022. "Multicriteria Decision Analysis of Suitable Location for Wind and Photovoltaic Power Plants on the Galápagos Islands," Energies, MDPI, vol. 16(1), pages 1-23, December.
    2. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Nijs, Wouter & Politis, Savvas, 2020. "Analysing the influence of trade, technology learning and policy on the employment prospects of wind and solar energy deployment: The EU case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    3. Dufo-López, Rodolfo & Cristóbal-Monreal, Iván R. & Yusta, José M., 2016. "Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation," Renewable Energy, Elsevier, vol. 94(C), pages 280-293.
    4. Hasan, M.A. & Chapman, R. & Frame, D.J., 2020. "Acceptability of transport emissions reduction policies: A multi-criteria analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Ortega-Izquierdo, Margarita & Río, Pablo del, 2020. "An analysis of the socioeconomic and environmental benefits of wind energy deployment in Europe," Renewable Energy, Elsevier, vol. 160(C), pages 1067-1080.
    6. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    7. Assadi, Mohammad Reza & Ataebi, Melikasadat & Ataebi, Elmira sadat & Hasani, Aliakbar, 2022. "Prioritization of renewable energy resources based on sustainable management approach using simultaneous evaluation of criteria and alternatives: A case study on Iran's electricity industry," Renewable Energy, Elsevier, vol. 181(C), pages 820-832.
    8. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    9. Osorio-Aravena, Juan Carlos & Ram, Manish & Aghahosseini, Arman & Breyer, Christian, 2025. "Evaluation of employment effects during the transition of the Chilean energy system," Energy, Elsevier, vol. 318(C).
    10. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    11. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Socio-techno-economic design of hybrid renewable energy system using optimization techniques," Renewable Energy, Elsevier, vol. 119(C), pages 459-472.
    12. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    13. A. Psomas & I. Vryzidis & A. Spyridakos & M. Mimikou, 2021. "MCDA approach for agricultural water management in the context of water–energy–land–food nexus," Operational Research, Springer, vol. 21(1), pages 689-723, March.
    14. Arwa Khannoussi & Antoine Rolland & Julien Velcin, 2025. "A multidimensional spatial model for preference representation in multi-criteria group decision aiding," 4OR, Springer, vol. 23(2), pages 163-191, June.
    15. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Xidonas, Panos & Thomakos, Dimitris & Samitas, Aristeidis, 2025. "On the integration of multiple criteria decision aiding and forecasting: Does it create value in portfolio selection?," European Journal of Operational Research, Elsevier, vol. 321(2), pages 516-528.
    17. Ram, Manish & Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050," Energy, Elsevier, vol. 238(PA).
    18. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach," Renewable Energy, Elsevier, vol. 171(C), pages 58-74.
    19. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2017. "Comparative analysis of direct employment generated by renewable and non-renewable power plants," Energy, Elsevier, vol. 139(C), pages 542-554.
    20. Silvia Angilella & Sebastiano Mazz`u, 2013. "The Financing of Innovative SMEs: a multicriteria credit rating model," Papers 1308.0889, arXiv.org, revised Jun 2014.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.