IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v239y2025ics0960148124020937.html
   My bibliography  Save this article

Analysis of the inter-city shared mobility system based on autonomous electric vehicles

Author

Listed:
  • Wang, Peng
  • Jiang, Han
  • Cui, Yanlei
  • Zhao, Mingming
  • Ren, Yilong
  • Xu, Liang

Abstract

While autonomous electric vehicles (AEVs) have been preliminarily implemented in shared travel services from both technical and theoretical perspectives, challenges such as dispersed fleets, limited service quality, and travel safety concerns have confined existing research to intra-city shared mobility, with few studies focusing on inter-city shared mobility for AEVs. With China’s metropolitan regions expanding and intercity travel rapidly increasing, examining the use of shared autonomous electric vehicles (SAEVs) for intercity travel is essential for future transportation systems. To address this issue, this study models the inter-city shared mobility problem utilizing mixed integer linear programming. The problem is defined on a directed graph and addressed using a variable neighborhood search algorithm. Numerical experiments are designed based on the actual shared mobility data between Yinchuan and Shizuishan, Ningxia Province, China. From the perspective of the operating platform, the potential influencing factors of the inter-city shared mobility system are analyzed, including passenger travel demand, fleet size, vehicle range, and the number of charging stations. The results demonstrate that increasing temporal and spatial imbalance in passenger travel demand and excessive fleet size will lead to lower total revenue of the operation platform. Conversely, within certain thresholds, increasing the number of charging stations, vehicle range, and fleet size will increase the total revenue. Continuing to increase the number of charging stations and vehicle range has no significant effect on total revenue and service rate but will lead to a waste of basic resources. The study is expected to provide a solution for building an inter-city shared mobility system based on SAEVs. By fully understanding the system’s limitations and advantages, we aim to provide a reference template for constructing future inter-city shared mobility systems.

Suggested Citation

  • Wang, Peng & Jiang, Han & Cui, Yanlei & Zhao, Mingming & Ren, Yilong & Xu, Liang, 2025. "Analysis of the inter-city shared mobility system based on autonomous electric vehicles," Renewable Energy, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124020937
    DOI: 10.1016/j.renene.2024.122025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124020937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Jiaqi & Long, Jiancheng & Xu, Xiaoming & Yu, Miao & Yuan, Kai, 2022. "The vehicle routing problem of intercity ride-sharing between two cities," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 113-139.
    2. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    3. M. M. Vazifeh & P. Santi & G. Resta & S. H. Strogatz & C. Ratti, 2018. "Addressing the minimum fleet problem in on-demand urban mobility," Nature, Nature, vol. 557(7706), pages 534-538, May.
    4. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    5. Loeb, Benjamin & Kockelman, Kara M., 2019. "Fleet performance and cost evaluation of a shared autonomous electric vehicle (SAEV) fleet: A case study for Austin, Texas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 374-385.
    6. Lavieri, Patrícia S. & Bhat, Chandra R., 2019. "Modeling individuals’ willingness to share trips with strangers in an autonomous vehicle future," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 242-261.
    7. Chen, T. Donna & Kockelman, Kara M. & Hanna, Josiah P., 2016. "Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 243-254.
    8. Fatih Ecer & Tolga Murat & Hasan Dinçer & Serhat Yüksel, 2024. "A fuzzy BWM and MARCOS integrated framework with Heronian function for evaluating cryptocurrency exchanges: a case study of Türkiye," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
    9. João B. G. Brito & Guilherme B. Bucco & Rodrigo Heldt & João L. Becker & Cleo S. Silveira & Fernando B. Luce & Michel J. Anzanello, 2024. "A framework to improve churn prediction performance in retail banking," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhiyong & Li, Ruimin & Dai, Jingchen, 2022. "Effects and feasibility of shared mobility with shared autonomous vehicles: An investigation based on data-driven modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 206-226.
    2. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2022. "Dynamic ride-sharing impacts of greater trip demand and aggregation at stops in shared autonomous vehicle systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 114-125.
    3. Hyland, Michael & Mahmassani, Hani S., 2020. "Operational benefits and challenges of shared-ride automated mobility-on-demand services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 251-270.
    4. Noruzoliaee, Mohamadhossein & Zou, Bo, 2022. "One-to-many matching and section-based formulation of autonomous ridesharing equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 72-100.
    5. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    6. Melendez, Kevin A. & Das, Tapas K. & Kwon, Changhyun, 2020. "Optimal operation of a system of charging hubs and a fleet of shared autonomous electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    7. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    8. Al-Kanj, Lina & Nascimento, Juliana & Powell, Warren B., 2020. "Approximate dynamic programming for planning a ride-hailing system using autonomous fleets of electric vehicles," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1088-1106.
    9. Schaller, Bruce, 2021. "Can sharing a ride make for less traffic? Evidence from Uber and Lyft and implications for cities," Transport Policy, Elsevier, vol. 102(C), pages 1-10.
    10. Zhang, Li & Liu, Zhongshan & Yu, Lan & Fang, Ke & Yao, Baozhen & Yu, Bin, 2022. "Routing optimization of shared autonomous electric vehicles under uncertain travel time and uncertain service time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    11. Liao, Zitong & Taiebat, Morteza & Xu, Ming, 2021. "Shared autonomous electric vehicle fleets with vehicle-to-grid capability: Economic viability and environmental co-benefits," Applied Energy, Elsevier, vol. 302(C).
    12. Borge-Diez, David & Icaza, Daniel & Açıkkalp, Emin & Amaris, Hortensia, 2021. "Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share," Energy, Elsevier, vol. 237(C).
    13. Mohamad Shatanawi & Mohammed Hajouj & Belal Edries & Ferenc Mészáros, 2022. "The Interrelationship between Road Pricing Acceptability and Self-Driving Vehicle Adoption: Insights from Four Countries," Sustainability, MDPI, vol. 14(19), pages 1-32, October.
    14. Tian, Jingjing & Jia, Hongfei & Wang, Guanfeng & Huang, Qiuyang & Wu, Ruiyi & Gao, Heyao & Liu, Chao, 2024. "Integrated optimization of charging infrastructure, fleet size and vehicle operation in shared autonomous electric vehicle system considering vehicle-to-grid," Renewable Energy, Elsevier, vol. 229(C).
    15. Peer, Stefanie & Müller, Johannes & Naqvi, Asjad & Straub, Markus, 2024. "Introducing shared, electric, autonomous vehicles (SAEVs) in sub-urban zones: Simulating the case of Vienna," Transport Policy, Elsevier, vol. 147(C), pages 232-243.
    16. Cilio, Luca & Babacan, Oytun, 2021. "Allocation optimisation of rapid charging stations in large urban areas to support fully electric taxi fleets," Applied Energy, Elsevier, vol. 295(C).
    17. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    18. Mo, Dong & Chen, Xiqun (Michael) & Zhang, Junlin, 2022. "Modeling and Managing Mixed On-Demand Ride Services of Human-Driven Vehicles and Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 80-119.
    19. Chen, Yao & Liu, Yang & Bai, Yun & Mao, Baohua, 2024. "Real-time dispatch management of shared autonomous vehicles with on-demand and pre-booked requests," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    20. Wali, Behram & Santi, Paolo & Ratti, Carlo, 2023. "Are californians willing to use shared automated vehicles (SAV) & renounce existing vehicles? An empirical analysis of factors determining SAV use & household vehicle ownership," Technological Forecasting and Social Change, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124020937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.