IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124019153.html
   My bibliography  Save this article

A novel linear programming-based predictive control method for building battery operations with reduced cost and enhanced computational efficiency

Author

Listed:
  • Fan, Cheng
  • Lu, Mengyan
  • Sun, Yongjun
  • Liang, Dekun

Abstract

Battery energy storage systems can be readily integrated with buildings to enhance renewable energy self-consumptions while leveraging time-variant electricity tariffs for possible operation cost reductions. The extensive variability in building operating conditions presents significant challenges in developing universally applicable methods for optimal controls. To ensure reliable and robust controls, this study integrates predictive control with efficient linear programming to effectively fine-tune battery controls for real-time operations. An adaptive time aggregation scheme has been proposed to streamline the optimization process by accounting for unique changes in energy balances and tariffs. Comprehensive data experiments, based on measurements from 95 unique building operation scenarios, have been conducted to quantify the control performance given different optimization formulations, varying types and levels of prediction uncertainties in building energy demands and PV generations. The results validate the value of the method proposed, leading to 11.75 %–34.63 % operation cost reductions on average, while reducing computation steps by 87.75 %–92.60 % compared with conventional linear programming approaches. The insights obtained are useful for developing flexible building control strategies with improved computation efficiency and robustness, while providing extensible optimization frameworks for buildings with various energy patterns and storage systems.

Suggested Citation

  • Fan, Cheng & Lu, Mengyan & Sun, Yongjun & Liang, Dekun, 2024. "A novel linear programming-based predictive control method for building battery operations with reduced cost and enhanced computational efficiency," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019153
    DOI: 10.1016/j.renene.2024.121847
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    2. Torres, David & Crichigno, Jorge & Padilla, Gregg & Rivera, Ruben, 2014. "Scheduling coupled photovoltaic, battery and conventional energy sources to maximize profit using linear programming," Renewable Energy, Elsevier, vol. 72(C), pages 284-290.
    3. Fan, Cheng & Chen, Ruikun & Mo, Jinhan & Liao, Longhui, 2024. "Personalized federated learning for cross-building energy knowledge sharing: Cost-effective strategies and model architectures," Applied Energy, Elsevier, vol. 362(C).
    4. Bordin, Chiara & Anuta, Harold Oghenetejiri & Crossland, Andrew & Gutierrez, Isabel Lascurain & Dent, Chris J. & Vigo, Daniele, 2017. "A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration," Renewable Energy, Elsevier, vol. 101(C), pages 417-430.
    5. Angel L. Cedeño & Reinier López Ahuar & José Rojas & Gonzalo Carvajal & César Silva & Juan C. Agüero, 2022. "Model Predictive Control for Photovoltaic Plants with Non-Ideal Energy Storage Using Mixed Integer Linear Programming," Energies, MDPI, vol. 15(17), pages 1-21, September.
    6. Nottrott, A. & Kleissl, J. & Washom, B., 2013. "Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems," Renewable Energy, Elsevier, vol. 55(C), pages 230-240.
    7. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2020. "Optimizing the energy storage schedule of a battery in a PV grid-connected nZEB using linear programming," Energy, Elsevier, vol. 208(C).
    8. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    9. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Jeoung, Jaewon & Hong, Taehoon, 2024. "Reinforcement learning-based optimal scheduling model of battery energy storage system at the building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    10. Wang, Ran & Feng, Wei & Wang, Lan & Lu, Shilei, 2021. "A comprehensive evaluation of zero energy buildings in cold regions: Actual performance and key technologies of cases from China, the US, and the European Union," Energy, Elsevier, vol. 215(PA).
    11. Sharma, Vanika & Haque, Mohammed H. & Aziz, Syed Mahfuzul, 2019. "Energy cost minimization for net zero energy homes through optimal sizing of battery storage system," Renewable Energy, Elsevier, vol. 141(C), pages 278-286.
    12. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    13. Li, Jiaming, 2019. "Optimal sizing of grid-connected photovoltaic battery systems for residential houses in Australia," Renewable Energy, Elsevier, vol. 136(C), pages 1245-1254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammed Cavus & Dilum Dissanayake & Margaret Bell, 2025. "Deep-Fuzzy Logic Control for Optimal Energy Management: A Predictive and Adaptive Framework for Grid-Connected Microgrids," Energies, MDPI, vol. 18(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Bin & Peng, Jinqing & Li, Sihui & Li, Yi & Yan, Jinyue & Yang, Hongxing, 2022. "Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings," Applied Energy, Elsevier, vol. 305(C).
    2. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Hong, Juwon & Jeoung, Jaewon & Hong, Taehoon, 2023. "Multi-objective sizing and real-time scheduling of battery energy storage in energy-sharing community based on reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
    4. Nguyen, Su & Peng, Wei & Sokolowski, Peter & Alahakoon, Damminda & Yu, Xinghuo, 2018. "Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 228(C), pages 2567-2580.
    5. Liao, Wei & Xiao, Fu & Li, Yanxue & Zhang, Hanbei & Peng, Jinqing, 2024. "A comparative study of demand-side energy management strategies for building integrated photovoltaics-battery and electric vehicles (EVs) in diversified building communities," Applied Energy, Elsevier, vol. 361(C).
    6. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
    7. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "A Comprehensive Evaluation Model on Optimal Operational Schedules for Battery Energy Storage System by Maximizing Self-Consumption Strategy and Genetic Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    8. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    9. Wu, Di & Ma, Xu & Balducci, Patrick & Bhatnagar, Dhruv, 2021. "An economic assessment of behind-the-meter photovoltaics paired with batteries on the Hawaiian Islands," Applied Energy, Elsevier, vol. 286(C).
    10. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Jeoung, Jaewon & Hong, Taehoon, 2024. "Reinforcement learning-based optimal scheduling model of battery energy storage system at the building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    11. Sun, Xiaoqin & Lin, Yian & Zhu, Ziyang & Li, Jie, 2022. "Optimized design of a distributed photovoltaic system in a building with phase change materials," Applied Energy, Elsevier, vol. 306(PA).
    12. Nge, Chee Lim & Ranaweera, Iromi U. & Midtgård, Ole-Morten & Norum, Lars, 2019. "A real-time energy management system for smart grid integrated photovoltaic generation with battery storage," Renewable Energy, Elsevier, vol. 130(C), pages 774-785.
    13. Reimuth, Andrea & Locherer, Veronika & Danner, Martin & Mauser, Wolfram, 2020. "How do changes in climate and consumption loads affect residential PV coupled battery energy systems?," Energy, Elsevier, vol. 198(C).
    14. Nina Munzke & Felix Büchle & Anna Smith & Marc Hiller, 2021. "Influence of Efficiency, Aging and Charging Strategy on the Economic Viability and Dimensioning of Photovoltaic Home Storage Systems," Energies, MDPI, vol. 14(22), pages 1-46, November.
    15. Dougier, Nathanael & Garambois, Pierre & Gomand, Julien & Roucoules, Lionel, 2021. "Multi-objective non-weighted optimization to explore new efficient design of electrical microgrids," Applied Energy, Elsevier, vol. 304(C).
    16. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    17. Giorgos S. Georgiou & Pavlos Nikolaidis & Soteris A. Kalogirou & Paul Christodoulides, 2020. "A Hybrid Optimization Approach for Autonomy Enhancement of Nearly-Zero-Energy Buildings Based on Battery Performance and Artificial Neural Networks," Energies, MDPI, vol. 13(14), pages 1-23, July.
    18. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    19. Khezri, Rahmat & Mahmoudi, Amin & Whaley, David, 2022. "Optimal sizing and comparative analysis of rooftop PV and battery for grid-connected households with all-electric and gas-electricity utility," Energy, Elsevier, vol. 251(C).
    20. Iflah Javeed & Rahmat Khezri & Amin Mahmoudi & Amirmehdi Yazdani & G. M. Shafiullah, 2021. "Optimal Sizing of Rooftop PV and Battery Storage for Grid-Connected Houses Considering Flat and Time-of-Use Electricity Rates," Energies, MDPI, vol. 14(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.