IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v208y2020ics0360544220312846.html
   My bibliography  Save this article

Optimizing the energy storage schedule of a battery in a PV grid-connected nZEB using linear programming

Author

Listed:
  • Georgiou, Giorgos S.
  • Christodoulides, Paul
  • Kalogirou, Soteris A.

Abstract

Photovoltaic (PV) technology is highly adopted within buildings, as it is proven for reducing electricity bills. However, with the 2010/31/EU directive all new buildings shall be nearly Zero Energy Buildings (nZEB) from 2020 onward, with the requirement to maintain their energy consumption at low levels. For further embedding the nZEB concept in an integrated, holistic and efficient energy system, to overcome any application problems, one should not only focus on building energy efficiency designs, but also on smart and effective energy management techniques. For instance, as energy storage may contribute a key solution towards nZEB, a novel approach able to adapt to a given PV generation and load demand and individually control the battery and the net grid energy, is presented. This is achieved through Linear Programming (LP), a convex optimization tool, along with a weighted sum approach. Using real data, simulation results demonstrate that, choosing the right weight values based on the given generation and demand profiles, the LP model controls the building’s import energy, export energy and the battery accordingly. Hence, the net grid electrical energy is maintained to the minimum possible level. Finally, the LP model is crossed-checked with the freeware System Advisor Model (SAM) showing a normalized Root Mean Squared Error (nRMSE) of 2.10% for the annual battery dispatch. The analysis shows that the LP model combined with SAM, for addressing the non-linearity of the storage and to account for the power conversion losses, gives a lower annual net grid energy use than SAM’s automated target controller by 2.0%.

Suggested Citation

  • Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2020. "Optimizing the energy storage schedule of a battery in a PV grid-connected nZEB using linear programming," Energy, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220312846
    DOI: 10.1016/j.energy.2020.118177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220312846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    2. Lorenzi, Guido & Silva, Carlos Augusto Santos, 2016. "Comparing demand response and battery storage to optimize self-consumption in PV systems," Applied Energy, Elsevier, vol. 180(C), pages 524-535.
    3. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
    4. Nottrott, A. & Kleissl, J. & Washom, B., 2013. "Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems," Renewable Energy, Elsevier, vol. 55(C), pages 230-240.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Bianchi, Francesco & Domenghini, Piergiovanni & Cotana, Franco & Wang, Jinwen, 2022. "A techno-economic analysis of a solar PV and DC battery storage system for a community energy sharing," Energy, Elsevier, vol. 244(PB).
    2. Lin, Jian & Zhong, Xiaoyi & Wang, Jing & Huang, Yuan & Bai, Xuetao & Wang, Xiaonan & Shah, Nilay & Xie, Shan & Zhao, Yingru, 2021. "Relative optimization potential: A novel perspective to address trade-off challenges in urban energy system planning," Applied Energy, Elsevier, vol. 304(C).
    3. de Oliveira-Assis, Lais & Soares-Ramos, Emanuel P.P. & Sarrias-Mena, Raúl & García-Triviño, Pablo & González-Rivera, Enrique & Sánchez-Sainz, Higinio & Llorens-Iborra, Francisco & Fernández-Ramírez, L, 2022. "Simplified model of battery energy-stored quasi-Z-source inverter-based photovoltaic power plant with Twofold energy management system," Energy, Elsevier, vol. 244(PA).
    4. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
    5. Noman Shabbir & Lauri Kütt & Kamran Daniel & Victor Astapov & Hadi Ashraf Raja & Muhammad Naveed Iqbal & Oleksandr Husev, 2022. "Feasibility Investigation for Residential Battery Sizing Considering EV Charging Demand," Sustainability, MDPI, vol. 14(3), pages 1-13, January.
    6. Sun, Xiaoqin & Lin, Yian & Zhu, Ziyang & Li, Jie, 2022. "Optimized design of a distributed photovoltaic system in a building with phase change materials," Applied Energy, Elsevier, vol. 306(PA).
    7. Ahmadiahangar, Roya & Karami, Hossein & Husev, Oleksandr & Blinov, Andrei & Rosin, Argo & Jonaitis, Audrius & Sanjari, Mohammad Javad, 2022. "Analytical approach for maximizing self-consumption of nearly zero energy buildings- case study: Baltic region," Energy, Elsevier, vol. 238(PB).
    8. Kotarela, F. & Kyritsis, A. & Papanikolaou, N. & Kalogirou, S.A., 2021. "Enhanced nZEB concept incorporating a sustainable Grid Support Scheme," Renewable Energy, Elsevier, vol. 169(C), pages 714-725.
    9. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
    10. Zou, Bin & Peng, Jinqing & Li, Sihui & Li, Yi & Yan, Jinyue & Yang, Hongxing, 2022. "Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings," Applied Energy, Elsevier, vol. 305(C).
    11. Hou, Guolian & Ke, Yin & Huang, Congzhi, 2021. "A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe," Energy, Elsevier, vol. 237(C).
    12. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    14. Asad Ali & Muhammad Salman Fakhar & Syed Abdul Rahman Kashif & Ghulam Abbas & Irfan Ahmad Khan & Akhtar Rasool & Nasim Ullah, 2022. "Optimal Scheduling of Neural Network-Based Estimated Renewable Energy Nanogrid," Energies, MDPI, vol. 15(23), pages 1-31, November.
    15. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    16. Yingyue Li & Hongjun Li & Rui Miao & He Qi & Yi Zhang, 2023. "Energy–Environment–Economy (3E) Analysis of the Performance of Introducing Photovoltaic and Energy Storage Systems into Residential Buildings: A Case Study in Shenzhen, China," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
    17. Liu, Jiangyang & Liu, Zhongbing & Wu, Yaling & Chen, Xi & Xiao, Hui & Zhang, Ling, 2022. "Impact of climate on photovoltaic battery energy storage system optimization," Renewable Energy, Elsevier, vol. 191(C), pages 625-638.
    18. Chang, Soowon & Cho, Junyoung & Heo, Jae & Kang, Junsuk & Kobashi, Takuro, 2022. "Energy infrastructure transitions with PV and EV combined systems using techno-economic analyses for decarbonization in cities," Applied Energy, Elsevier, vol. 319(C).
    19. Giorgos S. Georgiou & Pavlos Nikolaidis & Soteris A. Kalogirou & Paul Christodoulides, 2020. "A Hybrid Optimization Approach for Autonomy Enhancement of Nearly-Zero-Energy Buildings Based on Battery Performance and Artificial Neural Networks," Energies, MDPI, vol. 13(14), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    2. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    3. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    4. Bandyopadhyay, Arkasama & Leibowicz, Benjamin D. & Webber, Michael E., 2021. "Solar panels and smart thermostats: The power duo of the residential sector?," Applied Energy, Elsevier, vol. 290(C).
    5. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    6. Tang, Ruoli & Wu, Zhou & Li, Xin, 2018. "Optimal operation of photovoltaic/battery/diesel/cold-ironing hybrid energy system for maritime application," Energy, Elsevier, vol. 162(C), pages 697-714.
    7. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    8. Giorgos S. Georgiou & Pavlos Nikolaidis & Soteris A. Kalogirou & Paul Christodoulides, 2020. "A Hybrid Optimization Approach for Autonomy Enhancement of Nearly-Zero-Energy Buildings Based on Battery Performance and Artificial Neural Networks," Energies, MDPI, vol. 13(14), pages 1-23, July.
    9. Adrian Grimm & Patrik Schönfeldt & Herena Torio & Peter Klement & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2021. "Deduction of Optimal Control Strategies for a Sector-Coupled District Energy System," Energies, MDPI, vol. 14(21), pages 1-13, November.
    10. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Md Jahidur Rahman & Tahar Tafticht & Mamadou Lamine Doumbia & Iqbal Messaïf, 2023. "Optimal Inverter Control Strategies for a PV Power Generation with Battery Storage System in Microgrid," Energies, MDPI, vol. 16(10), pages 1-36, May.
    12. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    13. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    14. Camilo, Jones C. & Guedes, Tatiana & Fernandes, Darlan A. & Melo, J.D. & Costa, F.F. & Sguarezi Filho, Alfeu J., 2019. "A maximum power point tracking for photovoltaic systems based on Monod equation," Renewable Energy, Elsevier, vol. 130(C), pages 428-438.
    15. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    16. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    17. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    18. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.
    19. Wang, Jian-jun & Deng, Yu-cong & Sun, Wen-biao & Zheng, Xiao-bin & Cui, Zheng, 2023. "Maximum power point tracking method based on impedance matching for a micro hydropower generator," Applied Energy, Elsevier, vol. 340(C).
    20. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220312846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.