IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005354.html
   My bibliography  Save this article

Extending the flight endurance of stratospheric airships using regenerative fuel cells-assisted pressure maintenance

Author

Listed:
  • Sun, Kangwen
  • Ji, Xinzhe
  • Shan, Chuan
  • Cheng, Dongji
  • Liang, Haoquan

Abstract

This study presents a comprehensive analysis of the design considerations and trade-offs involved in developing a stratospheric airship with in-flight gas replenishment based on regenerative fuel cells (RFC). To address the challenge of lift gas leakage and enhance flight endurance, the primary aim is to optimize energy acquisition, storage, and buoyancy maintenance. A solution utilizing RFCs to supply lift gas has been proposed, leveraging the combined utilization of hydrogen for energy and buoyancy maintenance. The flight endurance model considering thermal effects, energy system and gas leakage is established to provide insights into its potential for extending the flight endurance of stratospheric airships by 25.5 % based on the design of Stratobus. Scaling up the energy system provides surplus energy for hydrogen production; however, it may impact gas-tightness due to increased weight allocation. Various weight configurations were evaluated, demonstrating the significant impact of weight distribution on endurance. Without gas replenishment, the longest endurance was 60.4 days. With increased energy storage distribution and gas replenishment consideration, endurance improved to 87.2 days. Furthermore, a longer flight endurance extension to 118.2 days can be reached by applying a gasbag storage system. This underscores the importance of exploring innovative storage solutions to achieve longer endurance.

Suggested Citation

  • Sun, Kangwen & Ji, Xinzhe & Shan, Chuan & Cheng, Dongji & Liang, Haoquan, 2024. "Extending the flight endurance of stratospheric airships using regenerative fuel cells-assisted pressure maintenance," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005354
    DOI: 10.1016/j.renene.2024.120470
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.