IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7106-d1260713.html
   My bibliography  Save this article

Power Generation Calculation Model and Validation of Solar Array on Stratospheric Airships

Author

Listed:
  • Kaiyin Song

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Zhaojie Li

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yanlei Zhang

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China)

  • Xuwei Wang

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China)

  • Guoning Xu

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiaojun Zhang

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China)

Abstract

Current stratospheric airships generally employ photovoltaic cycle energy systems. Accurately calculating their power generation is significant for airships’ overall design and mission planning. However, the power generation of solar arrays on stratospheric airships is challenging to model and calculate due to the dynamic nature of the airships’ flight, resulting in continuously changing radiation conditions on the curved surface of the airships. The power generated by the airship solar array was modeled herein through a combination of the flight attitude, spatial position, time, and other influencing factors. Additionally, the model was modified by considering the variation in photovoltaic conversion efficiency based on the radiation incidence angle, as well as the state of charge and power consumption of the energy storage battery pack. This study compared the measurement data of power generation in real flight tests with the calculation results of the model. The comparison showed that the results of the calculated model were highly consistent with the actual measured data. An average normalized root-mean-square error of 2.47% validated the accuracy of the newly built model. The generalizability and rapidity of the model were also tested, and the results showed that the model performed well in both metrics.

Suggested Citation

  • Kaiyin Song & Zhaojie Li & Yanlei Zhang & Xuwei Wang & Guoning Xu & Xiaojun Zhang, 2023. "Power Generation Calculation Model and Validation of Solar Array on Stratospheric Airships," Energies, MDPI, vol. 16(20), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7106-:d:1260713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Huashan & Lian, Yongwang & Wang, Xianlong & Ma, Weibin & Zhao, Liang, 2011. "Solar constant values for estimating solar radiation," Energy, Elsevier, vol. 36(3), pages 1785-1789.
    2. Yang, Xixiang & Liu, Duoneng, 2017. "Renewable power system simulation and endurance analysis for stratospheric airships," Renewable Energy, Elsevier, vol. 113(C), pages 1070-1076.
    3. Sun, Bo & Lu, Lin & Yuan, Yanping & Ocłoń, Paweł, 2023. "Development and validation of a concise and anisotropic irradiance model for bifacial photovoltaic modules," Renewable Energy, Elsevier, vol. 209(C), pages 442-452.
    4. Zhang, Lanchuan & Li, Jun & Wu, Yifei & Lv, Mingyun, 2019. "Analysis of attitude planning and energy balance of stratospheric airship," Energy, Elsevier, vol. 183(C), pages 1089-1103.
    5. Xuwei Wang & Zhaojie Li & Yanlei Zhang, 2021. "Model for Predicting the Operating Temperature of Stratospheric Airship Solar Cells with a Support Vector Machine," Energies, MDPI, vol. 14(5), pages 1-14, February.
    6. Jiang, Yi & Lv, Mingyun & Sun, Kangwen, 2022. "Effects of installation angle on the energy performance for photovoltaic cells during airship cruise flight," Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Sun, Kangwen & Xu, Ziyuan & Lv, Mingyun, 2022. "Energy efficiency assessment of photovoltaic array on the stratospheric airship under partial shading conditions," Applied Energy, Elsevier, vol. 325(C).
    2. Siyu, Liu & Kangwen, Sun & Jian, Gao & Haoquan, Liang, 2023. "Receiving energy analysis and optimal design of crystalline silicon solar cell array on solar airship," Energy, Elsevier, vol. 282(C).
    3. Paweł Górecki, 2022. "Compact Thermal Modeling of Power Semiconductor Devices with the Influence of Atmospheric Pressure," Energies, MDPI, vol. 15(10), pages 1-10, May.
    4. Liu, Yang & Du, Huafei & Xu, Ziyuan & Sun, Kangwen & Lv, Mingyun, 2022. "Mission-based optimization of insulation layer for the solar array on the stratospheric airship," Renewable Energy, Elsevier, vol. 191(C), pages 318-329.
    5. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    6. Jiang, Yi & Lv, Mingyun & Wang, Chuanzhi & Meng, Xiangrui & Ouyang, Siyue & Wang, Guodong, 2021. "Layout optimization of stratospheric balloon solar array based on energy production," Energy, Elsevier, vol. 229(C).
    7. Shan, Chuan & Sun, Kangwen & Ji, Xinzhe & Cheng, Dongji, 2023. "A reconfiguration method for photovoltaic array of stratospheric airship based on multilevel optimization algorithm," Applied Energy, Elsevier, vol. 352(C).
    8. Almorox, Javier & Voyant, Cyril & Bailek, Nadjem & Kuriqi, Alban & Arnaldo, J.A., 2021. "Total solar irradiance's effect on the performance of empirical models for estimating global solar radiation: An empirical-based review," Energy, Elsevier, vol. 236(C).
    9. Alex Chernoff & Andrea N. Craig, 2022. "Distributional And Housing Price Effects From Public Transit Investment: Evidence From Vancouver," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 475-509, February.
    10. Jiang, Yi & Lv, Mingyun & Qu, Zhipeng & Zhang, Lanchuan, 2020. "Performance evaluation for scientific balloon station-keeping strategies considering energy management strategy," Renewable Energy, Elsevier, vol. 156(C), pages 290-302.
    11. Li, Huashan & Bu, Xianbiao & Long, Zhen & Zhao, Liang & Ma, Weibin, 2012. "Calculating the diffuse solar radiation in regions without solar radiation measurements," Energy, Elsevier, vol. 44(1), pages 611-615.
    12. Qiumin Dai & Daoming Xing & Xiande Fang & Yingjie Zhao, 2021. "Conceptual Design of an Energy System for High Altitude Airships Considering Thermal Effect," Energies, MDPI, vol. 14(14), pages 1-13, July.
    13. Carmen Mârza & Raluca Moldovan & Georgiana Corsiuc & Gelu Chisăliță, 2023. "Improving the Energy Performance of a Household Using Solar Energy: A Case Study," Energies, MDPI, vol. 16(18), pages 1-32, September.
    14. Meng, Junhui & Ma, Nuo & Meng, Fanmin & Zhang, Xiaohui & Liu, Li, 2022. "Energy management strategy of hybrid energy system for a multi-lobes hybrid air vehicle," Energy, Elsevier, vol. 255(C).
    15. Anis Ahmad Sher & Naseem Ahmad & Mariyam Sattar & Usman Ghafoor & Umer Hameed Shah, 2023. "Effect of Various Dusts and Humidity on the Performance of Renewable Energy Modules," Energies, MDPI, vol. 16(13), pages 1-20, June.
    16. Karimzadeh Kolamroudi, Mohammad & Ilkan, Mustafa & Egelioglu, Fuat & Safaei, Babak, 2022. "Maximization of the output power of low concentrating photovoltaic systems by the application of reflecting mirrors," Renewable Energy, Elsevier, vol. 189(C), pages 822-835.
    17. González-Espasandín, Óscar & Leo, Teresa J. & Raso, Miguel A. & Navarro, Emilio, 2019. "Direct methanol fuel cell (DMFC) and H2 proton exchange membrane fuel (PEMFC/H2) cell performance under atmospheric flight conditions of Unmanned Aerial Vehicles," Renewable Energy, Elsevier, vol. 130(C), pages 762-773.
    18. Jiang, Yi & Lv, Mingyun & Sun, Kangwen, 2022. "Effects of installation angle on the energy performance for photovoltaic cells during airship cruise flight," Energy, Elsevier, vol. 258(C).
    19. Yanhua Chang & Yi Liang, 2023. "Intelligent Risk Assessment of Ecological Agriculture Projects from a Vision of Low Carbon," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    20. Khorasanizadeh, H. & Mohammadi, K., 2013. "Introducing the best model for predicting the monthly mean global solar radiation over six major cities of Iran," Energy, Elsevier, vol. 51(C), pages 257-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7106-:d:1260713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.