IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225015749.html
   My bibliography  Save this article

Comprehensive tradeoff and utilization of airborne renewable energy and uncertain stratospheric wind potential based on reinforcement learning

Author

Listed:
  • Liu, Yang
  • Lv, Mingyun
  • Sun, Kangwen

Abstract

Solar-powered airships are demonstrated overwhelming superiority in plentiful application scenario. Adaptation to the flight environment and efficient energy management are essential during the mission. To improve the operating efficiency of airborne energy system, the tradeoff and integration of airborne renewable energy and uncertain stratospheric wind potential is studied. To complete the station keeping mission utilizing external and internal energy which has complex decision support parameters in different scales and continuous control action spaces with different characteristics, a Noisy Heterogeneous Policy Network Proximal Policy Optimization method is proposed. The state standardization, piecewise reward function, output action with noise, and heterogeneous policy network are designed. The results show that the proposed method has better convergence speed under different degrees of uncertainty of wind field and at different starting points. When the prediction error of the wind velocity is less than 2 m/s, the effective time within the region of the airship starting at specific positions is more than 80 %. When the error reaches 5 m/s, the time percentage is reduced to 50 %. The research results of this paper can provide some valuable reference for improving the performance of renewable energy system on stratospheric airship during the long-time flight in uncertain wind fields.

Suggested Citation

  • Liu, Yang & Lv, Mingyun & Sun, Kangwen, 2025. "Comprehensive tradeoff and utilization of airborne renewable energy and uncertain stratospheric wind potential based on reinforcement learning," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225015749
    DOI: 10.1016/j.energy.2025.135932
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225015749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225015749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.