IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224007400.html
   My bibliography  Save this article

HP3O algorithm-based all electric ship energy management strategy integrating demand-side adjustment

Author

Listed:
  • Song, Tiewei
  • Fu, Lijun
  • Zhong, Linlin
  • Fan, Yaxiang
  • Shang, Qianyi

Abstract

To tackle the energy management challenge that integrates power generation scheduling and demand-side adjustment for all-electric ship in uncertain marine environment, a hybrid penalized proximal policy optimization algorithm (HP3O)-based energy management strategy is proposed. First, demand-side adjustment, which involves adjusting the power of the ship's electric propulsion motors and flexible service loads, is integrated into the energy management problem. Second, HP3O algorithm is employed to obtain both continuous and discrete variables simultaneously. It utilizes a continuous actor network to obtain continuous variables, such as the generator's power and ship cruising speed, while employing a discrete actor network to determine discrete variables, i.e., the on/off status of the generators. Third, to handle complex constraints reasonably, the energy management problem is formulated as a constrained Markov decision process (CMDP), and an action mask mechanism is also integrated into the energy management framework to make agent's actions more reliable. The simulation results of an all-electric cruise ship validate the effectiveness and superiority of the proposed strategy in achieving near-optimal scheduling while satisfying operation constraints. Furthermore, a case study on a hybrid diesel-electric ferry confirms its generalization performance.

Suggested Citation

  • Song, Tiewei & Fu, Lijun & Zhong, Linlin & Fan, Yaxiang & Shang, Qianyi, 2024. "HP3O algorithm-based all electric ship energy management strategy integrating demand-side adjustment," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007400
    DOI: 10.1016/j.energy.2024.130968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.