Data-augmentation acceleration framework by graph neural network for near-optimal unit commitment
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.124332
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- de Mars, Patrick & O’Sullivan, Aidan, 2021. "Applying reinforcement learning and tree search to the unit commitment problem," Applied Energy, Elsevier, vol. 302(C).
- Álinson S. Xavier & Feng Qiu & Shabbir Ahmed, 2021. "Learning to Solve Large-Scale Security-Constrained Unit Commitment Problems," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 739-756, May.
- Bernard Knueven & James Ostrowski & Jean-Paul Watson, 2020. "On Mixed-Integer Programming Formulations for the Unit Commitment Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 857-876, October.
- Zhang, Menghan & Yang, Zhifang & Lin, Wei & Yu, Juan & Dai, Wei & Du, Ershun, 2021. "Enhancing economics of power systems through fast unit commitment with high time resolution," Applied Energy, Elsevier, vol. 281(C).
- Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- O’Malley, Cormac & de Mars, Patrick & Badesa, Luis & Strbac, Goran, 2023. "Reinforcement learning and mixed-integer programming for power plant scheduling in low carbon systems: Comparison and hybridisation," Applied Energy, Elsevier, vol. 349(C).
- Kai Pan & Ming Zhao & Chung-Lun Li & Feng Qiu, 2022. "A Polyhedral Study on Fuel-Constrained Unit Commitment," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3309-3324, November.
- Fajemisin, Adejuyigbe O. & Maragno, Donato & den Hertog, Dick, 2024. "Optimization with constraint learning: A framework and survey," European Journal of Operational Research, Elsevier, vol. 314(1), pages 1-14.
- Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
- Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
- Sun, Yanshuo & Kirtonia, Sajeeb & Chen, Zhi-Long, 2021. "A survey of finished vehicle distribution and related problems from an optimization perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
- Zhao, Shihao & Li, Kang & Yang, Zhile & Xu, Xinzhi & Zhang, Ning, 2022. "A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies," Applied Energy, Elsevier, vol. 314(C).
- Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2024. "A flow based formulation and a reinforcement learning based strategic oscillation for cross-dock door assignment," European Journal of Operational Research, Elsevier, vol. 312(2), pages 473-492.
- Bootaki, Behrang & Zhang, Guoqing, 2024. "A location-production-routing problem for distributed manufacturing platforms: A neural genetic algorithm solution methodology," International Journal of Production Economics, Elsevier, vol. 275(C).
- Panagiotis Andrianesis & Dimitris Bertsimas & Michael C. Caramanis & William W. Hogan, 2020. "Computation of Convex Hull Prices in Electricity Markets with Non-Convexities using Dantzig-Wolfe Decomposition," Papers 2012.13331, arXiv.org, revised Oct 2021.
- Linxin Zhang & Zuobin Ying & Zhile Yang & Yuanjun Guo, 2024. "Dynamic Multi-Energy Optimization for Unit Commitment Integrating PEVs and Renewable Energy: A DO3LSO Algorithm," Mathematics, MDPI, vol. 12(24), pages 1-28, December.
- Ahmet Herekoğlu & Özgür Kabak, 2024. "Crew recovery optimization with deep learning and column generation for sustainable airline operation management," Annals of Operations Research, Springer, vol. 342(1), pages 399-427, November.
- Jiang, Kai & Wang, Kunyu & Wu, Chengyu & Chen, Guo & Xue, Yusheng & Dong, Zhaoyang & Liu, Nian, 2024. "Trajectory simulation and optimization for interactive electricity-carbon system evolution," Applied Energy, Elsevier, vol. 360(C).
- van der Hagen, L. & Agatz, N.A.H. & Spliet, R. & Visser, T.R. & Kok, A.L., 2022. "Machine Learning-Based Feasibility Checks for Dynamic Time Slot Management," ERIM Report Series Research in Management ERS-2022-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Song, Tiewei & Fu, Lijun & Zhong, Linlin & Fan, Yaxiang & Shang, Qianyi, 2024. "HP3O algorithm-based all electric ship energy management strategy integrating demand-side adjustment," Energy, Elsevier, vol. 295(C).
- Wang, Siyi & Sheng, Wanxing & Shang, Yuwei & Liu, Keyan, 2024. "Distribution network voltage control considering virtual power plants cooperative optimization with transactive energy," Applied Energy, Elsevier, vol. 371(C).
- Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
- Ebrie, Awol Seid & Kim, Young Jin, 2024. "Reinforcement learning-based optimization for power scheduling in a renewable energy connected grid," Renewable Energy, Elsevier, vol. 230(C).
- Kim, Donghun & Wang, Zhe & Brugger, James & Blum, David & Wetter, Michael & Hong, Tianzhen & Piette, Mary Ann, 2022. "Site demonstration and performance evaluation of MPC for a large chiller plant with TES for renewable energy integration and grid decarbonization," Applied Energy, Elsevier, vol. 321(C).
- Luis O. Lara-Cerecedo & Jesús F. Hinojosa & Nun Pitalúa-Díaz & Yasuhiro Matsumoto & Alvaro González-Angeles, 2023. "Prediction of the Electricity Generation of a 60-kW Photovoltaic System with Intelligent Models ANFIS and Optimized ANFIS-PSO," Energies, MDPI, vol. 16(16), pages 1-26, August.
More about this item
Keywords
Unit commitment (UC); Mixed-integer linear problem (MILP); Machine learning (ML); Near-optimal solutions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pd:s030626192401715x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.