IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015379.html
   My bibliography  Save this article

Aerodynamic performance and noise emission of different geometries of Wells turbines under design and off-design conditions

Author

Listed:
  • Carrelhas, A.A.D.
  • Gato, L.M.C.
  • Morais, F.J.F.

Abstract

The path to the World’s energy system decarbonisation requires the contribution of a mix of renewable energy sources. In particular, wave energy and oscillating-water-column (OWC) devices can be significant contributors. However, they are still in an early stage of development, and their levelized cost of energy (LCOE) is still too high to compete in the utility market. The Wells turbine is an attractive solution to reduce the LCOE of OWC devices. Completing the available information in the literature on the performance of different Wells arrangements is a necessary step towards decision-making on which configuration is most cost-efficient given the hydrodynamic characteristics of a particular OWC wave energy converter (WEC). Furthermore, there is a research gap on these devices’ acoustics, which needs to be filled, given the impact noise might have on surrounding ecosystems. This study investigated the aero-acoustics performance of four Wells turbine geometries, including monoplane and biplane turbines with and without guide vanes. Experimental tests of the turbine models were conducted in an open-circuit test rig under design and off-design flow conditions. The research provides accurate aerodynamic data on very high flow rate (pressure) coefficients, essential to turbine-generator control algorithms and OWC WECs wave-to-wire numerical models. A specific noise level definition was inferred by analysing the aerodynamic noise sources in Wells turbines. This allows the prediction of noise emission from geometrically similar turbines of different sizes and rotational speeds from the experimental noise data collected with the tested Wells turbines.

Suggested Citation

  • Carrelhas, A.A.D. & Gato, L.M.C. & Morais, F.J.F., 2024. "Aerodynamic performance and noise emission of different geometries of Wells turbines under design and off-design conditions," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015379
    DOI: 10.1016/j.renene.2023.119622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gangopadhyay, A. & Seshadri, A.K. & Sparks, N.J. & Toumi, R., 2022. "The role of wind-solar hybrid plants in mitigating renewable energy-droughts," Renewable Energy, Elsevier, vol. 194(C), pages 926-937.
    2. Castro-Santos, Laura & Garcia, Geuffer Prado & Simões, Teresa & Estanqueiro, Ana, 2019. "Planning of the installation of offshore renewable energies: A GIS approach of the Portuguese roadmap," Renewable Energy, Elsevier, vol. 132(C), pages 1251-1262.
    3. Dutta, Anupam & Dutta, Probal, 2022. "Geopolitical risk and renewable energy asset prices: Implications for sustainable development," Renewable Energy, Elsevier, vol. 196(C), pages 518-525.
    4. Ciappi, Lorenzo & Simonetti, Irene & Bianchini, Alessandro & Cappietti, Lorenzo & Manfrida, Giampaolo, 2022. "Application of integrated wave-to-wire modelling for the preliminary design of oscillating water column systems for installations in moderate wave climates," Renewable Energy, Elsevier, vol. 194(C), pages 232-248.
    5. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O. & Varandas, J., 2019. "Test results of a 30 kW self-rectifying biradial air turbine-generator prototype," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 187-198.
    6. Portillo, J.C.C. & Reis, P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Backward bent-duct buoy or frontward bent-duct buoy? Review, assessment and optimisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 353-368.
    7. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    8. Alves, João S. & Gato, Luís M.C. & Falcão, António F.O. & Henriques, João C.C., 2021. "Experimental investigation on performance improvement by mid-plane guide-vanes in a biplane-rotor Wells turbine for wave energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Ramos, V. & Giannini, G. & Calheiros-Cabral, T. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "Legal framework of marine renewable energy: A review for the Atlantic region of Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Cárdenas, Bruno & Swinfen-Styles, Lawrie & Rouse, James & Hoskin, Adam & Xu, Weiqing & Garvey, S.D., 2021. "Energy storage capacity vs. renewable penetration: A study for the UK," Renewable Energy, Elsevier, vol. 171(C), pages 849-867.
    11. Falcão, António F.O. & Gato, Luís M.C. & Henriques, João C.C. & Borges, João E. & Pereiras, Bruno & Castro, Francisco, 2015. "A novel twin-rotor radial-inflow air turbine for oscillating-water-column wave energy converters," Energy, Elsevier, vol. 93(P2), pages 2116-2125.
    12. Walsh, Jodi & Bashir, Imran & Garrett, Joanne K. & Thies, Philipp R. & Blondel, Philippe & Johanning, Lars, 2017. "Monitoring the condition of Marine Renewable Energy Devices through underwater Acoustic Emissions: Case study of a Wave Energy Converter in Falmouth Bay, UK," Renewable Energy, Elsevier, vol. 102(PA), pages 205-213.
    13. Henriques, J.C.C. & Gato, L.M.C. & La Sala, V. & Carrelhas, A.A.D., 2023. "Acoustic noise emission of air turbines for wave energy conversion: Assessment and analysis," Renewable Energy, Elsevier, vol. 212(C), pages 897-907.
    14. Portillo, J.C.C. & Collins, K.M. & Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Howey, B.D. & Hann, M.R. & Greaves, D.M. & Falcão, A.F.O., 2020. "Wave energy converter physical model design and testing: The case of floating oscillating-water-columns," Applied Energy, Elsevier, vol. 278(C).
    15. Behrens, Sam & Hayward, Jennifer A. & Woodman, Stuart C. & Hemer, Mark A. & Ayre, Melanie, 2015. "Wave energy for Australia's National Electricity Market," Renewable Energy, Elsevier, vol. 81(C), pages 685-693.
    16. Torres, Fernando R. & Teixeira, Paulo R.F. & Didier, Eric, 2018. "A methodology to determine the optimal size of a wells turbine in an oscillating water column device by using coupled hydro-aerodynamic models," Renewable Energy, Elsevier, vol. 121(C), pages 9-18.
    17. Douvere, F. & Maes, F. & Vanhulle, A. & Schrijvers, J., 2007. "The role of marine spatial planning in sea use management: The Belgian case," Marine Policy, Elsevier, vol. 31(2), pages 182-191, March.
    18. Carfora, Alfonso & Pansini, Rosaria Vega & Scandurra, Giuseppe, 2022. "Energy dependence, renewable energy generation and import demand: Are EU countries resilient?," Renewable Energy, Elsevier, vol. 195(C), pages 1262-1274.
    19. Wang, Shuguang & Sun, Luang & Iqbal, Sajid, 2022. "Green financing role on renewable energy dependence and energy transition in E7 economies," Renewable Energy, Elsevier, vol. 200(C), pages 1561-1572.
    20. Fox, Brooklyn N. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Analysis of oscillating-water-column wave energy converter configurations for integration into caisson breakwaters," Applied Energy, Elsevier, vol. 295(C).
    21. Correia da Fonseca, F.X. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Oscillating flow rig for air turbine testing," Renewable Energy, Elsevier, vol. 142(C), pages 373-382.
    22. Tedd, James & Peter Kofoed, Jens, 2009. "Measurements of overtopping flow time series on the Wave Dragon, wave energy converter," Renewable Energy, Elsevier, vol. 34(3), pages 711-717.
    23. Maria Apolonia & Rhoda Fofack-Garcia & Donald R. Noble & Jonathan Hodges & Francisco X. Correia da Fonseca, 2021. "Legal and Political Barriers and Enablers to the Deployment of Marine Renewable Energy," Energies, MDPI, vol. 14(16), pages 1-24, August.
    24. Pereiras, Bruno & Castro, Francisco & Marjani, Abdelatif el & Rodríguez, Miguel A., 2011. "An improved radial impulse turbine for OWC," Renewable Energy, Elsevier, vol. 36(5), pages 1477-1484.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C., 2023. "Peak shaving control in OWC wave energy converters: From concept to implementation in the Mutriku wave power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    2. Portillo, J.C.C. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2023. "Model tests on a floating coaxial-duct OWC wave energy converter with focus on the spring-like air compressibility effect," Energy, Elsevier, vol. 263(PA).
    3. Carrelhas, A.A.D. & Gato, L.M.C. & Falcão, A.F.O. & Henriques, J.C.C., 2021. "Control law design for the air-turbine-generator set of a fully submerged 1.5 MW mWave prototype. Part 2: Experimental validation," Renewable Energy, Elsevier, vol. 171(C), pages 1002-1013.
    4. Morais, F.J.F. & Carrelhas, A.A.D. & Gato, L.M.C., 2023. "Biplane-rotor Wells turbine: The influence of solidity, presence of guide vanes and comparison with other configurations," Energy, Elsevier, vol. 276(C).
    5. Portillo, J.C.C. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O., 2023. "Implications of spring-like air compressibility effects in floating coaxial-duct OWCs: Experimental and numerical investigation," Renewable Energy, Elsevier, vol. 212(C), pages 478-491.
    6. Gato, L.M.C. & Maduro, A.R. & Carrelhas, A.A.D. & Henriques, J.C.C. & Ferreira, D.N., 2021. "Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results," Energy, Elsevier, vol. 216(C).
    7. Henriques, J.C.C. & Gato, L.M.C. & La Sala, V. & Carrelhas, A.A.D., 2023. "Acoustic noise emission of air turbines for wave energy conversion: Assessment and analysis," Renewable Energy, Elsevier, vol. 212(C), pages 897-907.
    8. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2022. "Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator," Renewable Energy, Elsevier, vol. 197(C), pages 583-593.
    9. Molina–Salas, A. & Longo, S. & Clavero, M. & Moñino, A., 2023. "Theoretical approach to the scale effects of an OWC device," Renewable Energy, Elsevier, vol. 219(P2).
    10. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    11. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    12. Scialò, A. & Henriques, J.C.C. & Malara, G. & Falcão, A.F.O. & Gato, L.M.C. & Arena, F., 2021. "Power take-off selection for a fixed U-OWC wave power plant in the Mediterranean Sea: The case of Roccella Jonica," Energy, Elsevier, vol. 215(PA).
    13. Ferreira, D.N. & Gato, L.M.C. & Eça, L., 2023. "Efficiency of biradial impulse turbines concerning rotor blade angle, guide-vane deflection and blockage," Energy, Elsevier, vol. 266(C).
    14. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
    16. Rodríguez, Laudino & Pereiras, Bruno & Fernández-Oro, Jesús & Castro, Francisco, 2019. "Optimization and experimental tests of a centrifugal turbine for an OWC device equipped with a twin turbines configuration," Energy, Elsevier, vol. 171(C), pages 710-720.
    17. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    18. Sharay Astariz & Gregorio Iglesias, 2015. "Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect," Energies, MDPI, vol. 8(7), pages 1-23, July.
    19. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    20. Choupin, Ophelie & Del Río-Gamero, B. & Schallenberg-Rodríguez, Julieta & Yánez-Rosales, Pablo, 2022. "Integration of assessment-methods for wave renewable energy: Resource and installation feasibility," Renewable Energy, Elsevier, vol. 185(C), pages 455-482.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.