IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v142y2019icp373-382.html
   My bibliography  Save this article

Oscillating flow rig for air turbine testing

Author

Listed:
  • Correia da Fonseca, F.X.
  • Henriques, J.C.C.
  • Gato, L.M.C.
  • Falcão, A.F.O.

Abstract

Oscillating water column (OWC) devices equipped with an air turbine are the most extensively studied and possibly the most reliable wave energy converters (WEC). Self-rectifying air turbines are usually employed, being the key element of the power-take-off system. Experimental testing the air turbine in realistic operating conditions is a fundamental step in turbine and WEC development. These turbines are, by definition, operating under oscillating airflows. The present paper describes the development of a novel test-rig designed to test self-rectifying air turbines under both steady and variable unidirectional airflows, and subsequent demonstration tests performed on an axial-flow impulse turbine. A real-time hardware-in-the-loop flow controller was implemented, providing the means to not only experimentally characterise the turbine's performance under realistic wave conditions, but, as importantly, to develop new advanced turbine-generator control strategies that further increase overall efficiency and survivability. Results show that a unidirectional oscillating-flow test-rig with a calibrated fan and fast-actuating valve system can adequately reproduce airflows that are characteristic of an OWC air turbine's operational regime. The hardware-in-the-loop simulator implemented in an oscillating-flow test-rig appears as an innovative, integrated solution for turbine testing in realistic operating flow conditions, but in a laboratory-controlled environment at a small fraction of the costs.

Suggested Citation

  • Correia da Fonseca, F.X. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Oscillating flow rig for air turbine testing," Renewable Energy, Elsevier, vol. 142(C), pages 373-382.
  • Handle: RePEc:eee:renene:v:142:y:2019:i:c:p:373-382
    DOI: 10.1016/j.renene.2019.04.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119306081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    2. Henriques, J.C.C. & Gato, L.M.C. & Lemos, J.M. & Gomes, R.P.F. & Falcão, A.F.O., 2016. "Peak-power control of a grid-integrated oscillating water column wave energy converter," Energy, Elsevier, vol. 109(C), pages 378-390.
    3. Thakker, A. & Abdulhadi, R., 2008. "The performance of Wells turbine under bi-directional airflow," Renewable Energy, Elsevier, vol. 33(11), pages 2467-2474.
    4. Correia da Fonseca, F.X. & Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2016. "Model testing of an oscillating water column spar-buoy wave energy converter isolated and in array: Motions and mooring forces," Energy, Elsevier, vol. 112(C), pages 1207-1218.
    5. Moisel, Christoph & Carolus, Thomas H., 2016. "A facility for testing the aerodynamic and acoustic performance of bidirectional air turbines for ocean wave energy conversion," Renewable Energy, Elsevier, vol. 86(C), pages 1340-1352.
    6. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    7. Maeda, H & Santhakumar, S & Setoguchi, T & Takao, M & Kinoue, Y & Kaneko, K, 1999. "Performance of an impulse turbine with fixed guide vanesfn2fn2Patent pending. for wave power conversion," Renewable Energy, Elsevier, vol. 17(4), pages 533-547.
    8. Henriques, J.C.C. & Lopes, M.F.P. & Gomes, R.P.F. & Gato, L.M.C. & Falcão, A.F.O., 2012. "On the annual wave energy absorption by two-body heaving WECs with latching control," Renewable Energy, Elsevier, vol. 45(C), pages 31-40.
    9. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Hydrodynamic optimization of an axisymmetric floating oscillating water column for wave energy conversion," Renewable Energy, Elsevier, vol. 44(C), pages 328-339.
    10. Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters," Renewable Energy, Elsevier, vol. 50(C), pages 289-298.
    11. Falcão, A.F.O. & Henriques, J.C.C. & Gato, L.M.C., 2017. "Rotational speed control and electrical rated power of an oscillating-water-column wave energy converter," Energy, Elsevier, vol. 120(C), pages 253-261.
    12. Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henriques, J.C.C. & Gato, L.M.C. & La Sala, V. & Carrelhas, A.A.D., 2023. "Acoustic noise emission of air turbines for wave energy conversion: Assessment and analysis," Renewable Energy, Elsevier, vol. 212(C), pages 897-907.
    2. Carrelhas, A.A.D. & Gato, L.M.C. & Falcão, A.F.O. & Henriques, J.C.C., 2021. "Control law design for the air-turbine-generator set of a fully submerged 1.5 MW mWave prototype. Part 2: Experimental validation," Renewable Energy, Elsevier, vol. 171(C), pages 1002-1013.
    3. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C., 2023. "Peak shaving control in OWC wave energy converters: From concept to implementation in the Mutriku wave power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.
    2. Portillo, J.C.C. & Collins, K.M. & Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Howey, B.D. & Hann, M.R. & Greaves, D.M. & Falcão, A.F.O., 2020. "Wave energy converter physical model design and testing: The case of floating oscillating-water-columns," Applied Energy, Elsevier, vol. 278(C).
    3. Zabala, I. & Henriques, J.C.C. & Blanco, J.M. & Gomez, A. & Gato, L.M.C. & Bidaguren, I. & Falcão, A.F.O. & Amezaga, A. & Gomes, R.P.F., 2019. "Wave-induced real-fluid effects in marine energy converters: Review and application to OWC devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 535-549.
    4. Markel Penalba & John V. Ringwood, 2016. "A Review of Wave-to-Wire Models for Wave Energy Converters," Energies, MDPI, vol. 9(7), pages 1-45, June.
    5. Henriques, J.C.C. & Portillo, J.C.C. & Sheng, W. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Dynamics and control of air turbines in oscillating-water-column wave energy converters: Analyses and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 571-589.
    6. Scialò, A. & Henriques, J.C.C. & Malara, G. & Falcão, A.F.O. & Gato, L.M.C. & Arena, F., 2021. "Power take-off selection for a fixed U-OWC wave power plant in the Mediterranean Sea: The case of Roccella Jonica," Energy, Elsevier, vol. 215(PA).
    7. Falcão, António F.O. & Henriques, João C.C., 2019. "The spring-like air compressibility effect in oscillating-water-column wave energy converters: Review and analyses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 483-498.
    8. Oikonomou, Charikleia L.G. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Unveiling the potential of using a spar-buoy oscillating-water-column wave energy converter for low-power stand-alone applications," Applied Energy, Elsevier, vol. 292(C).
    9. Lorenzo Ciappi & Lapo Cheli & Irene Simonetti & Alessandro Bianchini & Giampaolo Manfrida & Lorenzo Cappietti, 2020. "Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots," Energies, MDPI, vol. 13(21), pages 1-28, October.
    10. Henriques, J.C.C. & Gato, L.M.C. & Lemos, J.M. & Gomes, R.P.F. & Falcão, A.F.O., 2016. "Peak-power control of a grid-integrated oscillating water column wave energy converter," Energy, Elsevier, vol. 109(C), pages 378-390.
    11. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    12. Henriques, J.C.C. & Gomes, R.P.F. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Ceballos, S., 2016. "Testing and control of a power take-off system for an oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 85(C), pages 714-724.
    13. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).
    14. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
    15. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2020. "Time-domain simulation of a slack-moored floating oscillating water column and validation with physical model tests," Renewable Energy, Elsevier, vol. 149(C), pages 165-180.
    16. Roh Chan & Kil-Won Kim & Ji-Yong Park & Se-Wan Park & Kyong-Hwan Kim & Sang-Shin Kwak, 2020. "Power Performance Analysis According to the Configuration and Load Control Algorithm of Power Take-Off System for Oscillating Water Column Type Wave Energy Converters," Energies, MDPI, vol. 13(23), pages 1-30, December.
    17. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    18. Liu, Zhen & Cui, Ying & Xu, Chuanli & Sun, Lixin & Li, Ming & Jin, Jiyuan, 2019. "Experimental and numerical studies on an OWC axial-flow impulse turbine in reciprocating air flows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    20. Correia da Fonseca, F.X. & Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2016. "Model testing of an oscillating water column spar-buoy wave energy converter isolated and in array: Motions and mooring forces," Energy, Elsevier, vol. 112(C), pages 1207-1218.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:142:y:2019:i:c:p:373-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.