IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v266y2023ics0360544222032765.html
   My bibliography  Save this article

Efficiency of biradial impulse turbines concerning rotor blade angle, guide-vane deflection and blockage

Author

Listed:
  • Ferreira, D.N.
  • Gato, L.M.C.
  • Eça, L.

Abstract

Self-rectifying impulse turbines have two sets of guide vanes symmetrically located on each rotor side. Aerodynamic losses resulting from the inherent misalignment between the rotor outflow and the outlet guide vanes penalize these turbines’ efficiency. This paper presents the aerodynamic design of a radial guide-vane system for self-rectifying biradial impulse turbines and the relation between guide-vane flow deflection and blockage, rotor blade angle and turbine efficiency in design conditions. The system comprises two concentric rows of constant-thickness vanes. The design method solves a multi-objective optimization problem that maximizes deflection while minimizing outflow blockage, returning a Pareto optimal set of guide vanes. A subset of these results is used to configure and assess multiple turbine geometries. Data are obtained numerically with a RANS solver. The new guide-vane system improves flow deflection over reference designs based on aerofoil-section vanes with identical blockage. A turbine efficiency of 68.2% is achieved for a guide-vane deflection of 67.3°, blockage factor of 0.61 and rotor blade angle of 35°. The new design leads to an estimated reduction of 58% on the stagnation pressure losses in the outlet guide vanes.

Suggested Citation

  • Ferreira, D.N. & Gato, L.M.C. & Eça, L., 2023. "Efficiency of biradial impulse turbines concerning rotor blade angle, guide-vane deflection and blockage," Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222032765
    DOI: 10.1016/j.energy.2022.126390
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, N. & Kalair, A. & Abas, N. & Haider, A., 2017. "Review of ocean tidal, wave and thermal energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 590-604.
    2. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O. & Varandas, J., 2019. "Test results of a 30 kW self-rectifying biradial air turbine-generator prototype," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 187-198.
    3. Fox, Brooklyn N. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Analysis of oscillating-water-column wave energy converter configurations for integration into caisson breakwaters," Applied Energy, Elsevier, vol. 295(C).
    4. Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.
    5. Gato, L.M.C. & Maduro, A.R. & Carrelhas, A.A.D. & Henriques, J.C.C. & Ferreira, D.N., 2021. "Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results," Energy, Elsevier, vol. 216(C).
    6. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    7. Badhurshah, Rameez & Dudhgaonkar, Prasad & Jalihal, Purnima & Samad, Abdus, 2018. "High efficiency design of an impulse turbine used in oscillating water column to harvest wave energy," Renewable Energy, Elsevier, vol. 121(C), pages 344-354.
    8. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Ferreira, D.N. & Gato, L.M.C. & Eça, L. & Henriques, J.C.C., 2020. "Aerodynamic analysis of a biradial turbine with movable guide-vanes: Incidence and slip effects on efficiency," Energy, Elsevier, vol. 200(C).
    10. Setoguchi, T & Santhakumar, S & Maeda, H & Takao, M & Kaneko, K, 2001. "A review of impulse turbines for wave energy conversion," Renewable Energy, Elsevier, vol. 23(2), pages 261-292.
    11. Wang, Xiaoming & Shang, Jianzhong & Luo, Zirong & Tang, Li & Zhang, Xiangpo & Li, Juan, 2012. "Reviews of power systems and environmental energy conversion for unmanned underwater vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1958-1970.
    12. Shona Pennock & Anna Garcia-Teruel & Donald R. Noble & Owain Roberts & Adrian de Andres & Charlotte Cochrane & Henry Jeffrey, 2022. "Deriving Current Cost Requirements from Future Targets: Case Studies for Emerging Offshore Renewable Energy Technologies," Energies, MDPI, vol. 15(5), pages 1-19, February.
    13. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liaw, Kim Leong & Kurnia, Jundika C. & Lai, Wen Kang & Ong, Khai Chuin & Zar, Muhammad Aliff B. Mohd Ali & Muhammad, M. Fadhli B. & Firmansyah,, 2023. "Optimization of a novel impulse gas turbine nozzle and blades design utilizing Taguchi method for micro-scale power generation," Energy, Elsevier, vol. 282(C).
    2. Henriques, J.C.C. & Gato, L.M.C. & La Sala, V. & Carrelhas, A.A.D., 2023. "Acoustic noise emission of air turbines for wave energy conversion: Assessment and analysis," Renewable Energy, Elsevier, vol. 212(C), pages 897-907.
    3. Gong, Wenbin & Lei, Zhao & Nie, Shunpeng & Liu, Gaowen & Lin, Aqiang & Feng, Qing & Wang, Zhiwu, 2023. "A novel combined model for energy consumption performance prediction in the secondary air system of gas turbine engines based on flow resistance network," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gato, L.M.C. & Maduro, A.R. & Carrelhas, A.A.D. & Henriques, J.C.C. & Ferreira, D.N., 2021. "Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results," Energy, Elsevier, vol. 216(C).
    2. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
    3. Portillo, J.C.C. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2023. "Model tests on a floating coaxial-duct OWC wave energy converter with focus on the spring-like air compressibility effect," Energy, Elsevier, vol. 263(PA).
    4. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C., 2023. "Peak shaving control in OWC wave energy converters: From concept to implementation in the Mutriku wave power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    5. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    6. Portillo, J.C.C. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O., 2023. "Implications of spring-like air compressibility effects in floating coaxial-duct OWCs: Experimental and numerical investigation," Renewable Energy, Elsevier, vol. 212(C), pages 478-491.
    7. Zhang, Yang & Zhao, Xuanlie & Geng, Jing & Göteman, Malin & Tao, Longbin, 2022. "Wave power extraction and coastal protection by a periodic array of oscillating buoys embedded in a breakwater," Renewable Energy, Elsevier, vol. 190(C), pages 434-456.
    8. Doyle, Simeon & Aggidis, George A., 2019. "Development of multi-oscillating water columns as wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 75-86.
    9. He, Fang & Pan, Jiapeng & Lin, Yuan & Song, Mengxia & Zheng, Siming, 2024. "Laboratory modelling of nonlinear power take-off damping and its effects on an offshore stationary cylindrical OWC device," Energy, Elsevier, vol. 296(C).
    10. Liu, Zhen & Xu, Chuanli & Zhang, Xiaoxia & Ning, Dezhi, 2023. "Experimental study on an isolated oscillating water column wave energy converting device in oblique waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    11. Anthony Roy & François Auger & Florian Dupriez-Robin & Salvy Bourguet & Quoc Tuan Tran, 2018. "Electrical Power Supply of Remote Maritime Areas: A Review of Hybrid Systems Based on Marine Renewable Energies," Energies, MDPI, vol. 11(7), pages 1-27, July.
    12. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.
    14. Carrelhas, A.A.D. & Gato, L.M.C. & Falcão, A.F.O. & Henriques, J.C.C., 2022. "Control law design for the air-turbine-generator set of a fully submerged 1.5 MW mWave prototype. Part 1: Numerical modelling," Renewable Energy, Elsevier, vol. 181(C), pages 1402-1418.
    15. Zabala, I. & Henriques, J.C.C. & Blanco, J.M. & Gomez, A. & Gato, L.M.C. & Bidaguren, I. & Falcão, A.F.O. & Amezaga, A. & Gomes, R.P.F., 2019. "Wave-induced real-fluid effects in marine energy converters: Review and application to OWC devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 535-549.
    16. Henriques, J.C.C. & Gato, L.M.C. & La Sala, V. & Carrelhas, A.A.D., 2023. "Acoustic noise emission of air turbines for wave energy conversion: Assessment and analysis," Renewable Energy, Elsevier, vol. 212(C), pages 897-907.
    17. Li, Hui & Wang, LiGuo, 2023. "Numerical study on self-power supply of large marine monitoring buoys: Wave-excited vibration energy harvesting and harvester optimization," Energy, Elsevier, vol. 285(C).
    18. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2022. "Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator," Renewable Energy, Elsevier, vol. 197(C), pages 583-593.
    19. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    20. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222032765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.