Dynamic hybrid modeling of fuel ethanol fermentation process by integrating biomass concentration XGBoost model and kinetic parameter artificial neural network model into mechanism model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2023.01.113
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
- Huang, Weijia & Zheng, Danxing & Chen, Xiaohui & Shi, Lin & Dai, Xiaoye & Chen, Youhui & Jing, Xuye, 2020. "Standard thermodynamic properties for the energy grade evaluation of fossil fuels and renewable fuels," Renewable Energy, Elsevier, vol. 147(P1), pages 2160-2170.
- Dodić, Jelena M. & Vučurović, Damjan G. & Dodić, Siniša N. & Grahovac, Jovana A. & Popov, Stevan D. & Nedeljković, Nataša M., 2012. "Kinetic modelling of batch ethanol production from sugar beet raw juice," Applied Energy, Elsevier, vol. 99(C), pages 192-197.
- Pandiyan, K. & Singh, Arjun & Singh, Surender & Saxena, Anil Kumar & Nain, Lata, 2019. "Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production," Renewable Energy, Elsevier, vol. 132(C), pages 723-741.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Niaze, Ambereen A. & Sahu, Rohit & Sunkara, Mahendra K. & Upadhyayula, Sreedevi, 2023. "Model construction and optimization for raising the concentration of industrial bioethanol production by using a data-driven ANN model," Renewable Energy, Elsevier, vol. 216(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
- Khelifi, Omar & Sbai, Salima & Selka, Hala & Laksaci, Hamza & Gueguim Kana, Evariste Bosco & Özacar, Mahmut & Ünlü, Burak & Merabti, Mohammed Elamine & Zemani, Nassima Djihane & Nacef, Mouna & Chelagh, 2025. "Statistical optimization and kinetic study of biofuel production from wastes fruits by saccharification and fermentation," Energy, Elsevier, vol. 315(C).
- Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
- Trivedi, Jatin & Chakraborty, Dipanwita & Nobanee, Haitham, 2023. "Modelling the growth dynamics of sustainable renewable energy – Flourishing green financing," Energy Policy, Elsevier, vol. 183(C).
- Dima, Bogdan & Dima, Ştefana Maria & Ioan, Roxana, 2025. "The short-run impact of investor expectations’ past volatility on current predictions: The case of VIX," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 98(C).
- Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
- Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
- Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017.
"Forecasting compositional time series: A state space approach,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
- Ralph D. Snyder & J. Keith Ord & Anne B. Koehler & Keith R. McLaren & Adrian Beaumont, 2015. "Forecasting Compositional Time Series: A State Space Approach," Monash Econometrics and Business Statistics Working Papers 11/15, Monash University, Department of Econometrics and Business Statistics.
- Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
- Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
- Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021.
"Non‐linear mixed‐effects models for time series forecasting of smart meter demand,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
- Cameron Roach & Rob J Hyndman & Souhaib Ben Taieb, 2020. "Nonlinear Mixed Effects Models for Time Series Forecasting of Smart Meter Demand," Monash Econometrics and Business Statistics Working Papers 41/20, Monash University, Department of Econometrics and Business Statistics.
- Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Wang, Lili & Pang, Jun, 2025. "Assessing the impact of climate mitigation technology and environmental tax on renewable energy development: A dynamic threshold approach," Renewable Energy, Elsevier, vol. 244(C).
- Bayode, Israel A. & Ba-Alawi, Abdulrahman H. & Nguyen, Hai-Tra & Woo, Taeyong & Yoo, ChangKyoo, 2025. "Long-term policy guidance for sustainable energy transition in Nigeria: A deep learning-based peak load forecasting with econo-environmental scenario analysis," Energy, Elsevier, vol. 322(C).
- Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
- Ana Paula Serafini Poeta Silva & Guilherme Arruda Cezar & Edison Sousa Magalhães & Kinath Rupasinghe & Srijita Chandra & Gustavo S Silva & Marcelo Almeida & Bret Crim & Eric Burrough & Phillip Gauger , 2024. "Monitoring emerging pathogens using negative nucleic acid test results from endemic pathogens in pig populations: Application to porcine enteric coronaviruses," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-18, July.
- Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
More about this item
Keywords
Fuel ethanol fermentation process; Hybrid model; Mechanism model; Extreme gradient boosting; Artificial neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:205:y:2023:i:c:p:574-582. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.