IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp398-405.html

Metal hydride-based hydrogen production and storage system for stationary applications powered by renewable sources

Author

Listed:
  • Rangel, C.M.
  • Fernandes, V.R.
  • Gano, A.J.

Abstract

In this work, a compact and low-cost electrochemical laboratory prototype for the storage and production of hydrogen, based on metallic hydrides, with high reversibility in the charge/discharge process is demonstrated, using electricity either from the grid or by direct coupling to renewable energies as power source. The reactor is a 316 L stainless steel vessel with a capacity up to 15 bar internal pressure. It includes working electrodes of alloy LaNi4.3Co0.4Al0.3 and counter-electrodes of Ni foam in an electrolyte solution of 35% KOH. The reactor uses unicellular/multicellular configurations, so that the overall capacity of the system can be extended by increasing the number of working electrodes, resulting in a highly modular system. Results show excellent linearity, reversibility, and stability under cycling at room temperature and pressure, demonstrated either when powered by the grid or by off-grid renewable energy. Furthermore, criteria were established for the quantification of the state of full charge and full discharge. The system was integrated with a custom electronic system, developed in-house for monitoring and control the reactor and to optimize the performance and energy efficiency of the hydrogen storage and discharge processes.

Suggested Citation

  • Rangel, C.M. & Fernandes, V.R. & Gano, A.J., 2022. "Metal hydride-based hydrogen production and storage system for stationary applications powered by renewable sources," Renewable Energy, Elsevier, vol. 197(C), pages 398-405.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:398-405
    DOI: 10.1016/j.renene.2022.07.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mohammadi, Amin & Mehrpooya, Mehdi, 2018. "A comprehensive review on coupling different types of electrolyzer to renewable energy sources," Energy, Elsevier, vol. 158(C), pages 632-655.
    2. Louis Schlapbach & Andreas Züttel, 2001. "Hydrogen-storage materials for mobile applications," Nature, Nature, vol. 414(6861), pages 353-358, November.
    3. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viglioni, Marco Túlio Dinali & Calegario, Cristina Lelis Leal & Bruhn, Nádia Campos Pereira, 2025. "Effects of economic complexity and metallic mineral resources on renewable energy transition in developing countries," Resources Policy, Elsevier, vol. 102(C).
    2. Mou, Xiaofeng & Zhou, Wei & Bao, Zewei & Huang, Weixing, 2024. "Effective thermal conductivity of LaNi5 powder beds for hydrogen storage: Measurement and theoretical analysis," Renewable Energy, Elsevier, vol. 231(C).
    3. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2024. "Sustainable and self-sufficient social home through a combined PV‑hydrogen pilot," Applied Energy, Elsevier, vol. 363(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lesmana, Luthfan Adhy & Aziz, Muhammad, 2023. "Adoption of triply periodic minimal surface structure for effective metal hydride-based hydrogen storage," Energy, Elsevier, vol. 262(PA).
    2. Liu, Yongfeng & Zhang, Wenxuan & Zhang, Xin & Yang, Limei & Huang, Zhenguo & Fang, Fang & Sun, Wenping & Gao, Mingxia & Pan, Hongge, 2023. "Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Zhang, Tong & Qadrdan, Meysam & Wu, Jianzhong & Couraud, Benoit & Stringer, Martin & Walker, Sara & Hawkes, Adam & Allahham, Adib & Flynn, David & Pudjianto, Danny & Dodds, Paul & Strbac, Goran, 2025. "A systematic review of modelling methods for studying the integration of hydrogen into energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    4. Morales-Ospino, R. & Celzard, A. & Fierro, V., 2023. "Strategies to recover and minimize boil-off losses during liquid hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Ding, Xin & Chen, Ruirun & Chen, Xiaoyu & Cao, Wenchao & Su, Yanqing & Ding, Hongsheng & Guo, Jingjie, 2020. "Formation of Mg2Ni/Cu phase and de-/hydrogenation behavior of Mg91Ni9-xCux alloy at moderate temperatures," Renewable Energy, Elsevier, vol. 166(C), pages 81-90.
    6. Komova, O.V. & Simagina, V.I. & Butenko, V.R. & Odegova, G.V. & Bulavchenko, O.A. & Nikolaeva, O.A. & Ozerova, A.M. & Lipatnikova, I.L. & Tayban, E.S. & Mukha, S.A. & Netskina, O.V., 2022. "Dehydrogenation of ammonia borane recrystallized by different techniques," Renewable Energy, Elsevier, vol. 184(C), pages 460-472.
    7. Solanki, Bhanupratap Singh & Lim, Hoyoung & Yoon, Seok Jun & Ham, Hyung Chul & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2025. "Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    8. Miao, Zheng & Jia, Tianxu & Xu, Jinliang & Xu, Chao, 2025. "Effect of the anisotropy of gas diffusion layer on transport characteristics and performance of a PEM electrolysis cell," Energy, Elsevier, vol. 323(C).
    9. Zheng Lian & Yixiao Wang & Xiyue Zhang & Abubakar Yusuf & Lord Famiyeh & David Murindababisha & Huan Jin & Yiyang Liu & Jun He & Yunshan Wang & Gang Yang & Yong Sun, 2021. "Hydrogen Production by Fluidized Bed Reactors: A Quantitative Perspective Using the Supervised Machine Learning Approach," J, MDPI, vol. 4(3), pages 1-22, July.
    10. Chung, Kyong-Hwan, 2010. "High-pressure hydrogen storage on microporous zeolites with varying pore properties," Energy, Elsevier, vol. 35(5), pages 2235-2241.
    11. Rashed Kaiser & Ayesha Munira Chowdhury, 2025. "Hydrogen-Powered Marine Vessels: A Rewarding yet Challenging Route to Decarbonization," Clean Technol., MDPI, vol. 7(3), pages 1-29, August.
    12. Ha, Chan & Zhou, Zhaozhou & Qin, Jiang & Wang, Cong & Liu, Zekuan & Leng, Shuang, 2024. "Structural optimization calculation of methanol spiral tube reformer based on waste heat utilization and experimental verification of reactor performance," Renewable Energy, Elsevier, vol. 226(C).
    13. Rasheed, Tahir & Ahmad, Rabia & Arishi, Ali, 2025. "Revolutionizing hydrogen production and storage: Harnessing the power of MXenes for a greener and sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    14. Abdellatif Azzaoui & Mohammed Attiaoui & Elmiloud Chaabelasri & Hugo Gonçalves Silva & Ahmed Alami Merrouni, 2025. "Techno-Economic Assessment of Linear Fresnel-Based Hydrogen Production in the MENA Region: Toward Affordable, Locally Driven Deployment for Enhanced Profitability and Reduced Costs," Energies, MDPI, vol. 18(14), pages 1-26, July.
    15. Belessiotis, George V. & Kontos, Athanassios G., 2022. "Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives," Renewable Energy, Elsevier, vol. 195(C), pages 497-515.
    16. Xi Yang & Yuting Li & Yitao Liu & Qian Li & Tingna Yang & Hongxing Jia, 2024. "Crystal Structure Prediction and Performance Assessment of Hydrogen Storage Materials: Insights from Computational Materials Science," Energies, MDPI, vol. 17(14), pages 1-20, July.
    17. Zhang, Rui & Cao, Xuewen & Zhang, Xingwang & Yang, Jian & Bian, Jiang, 2024. "Co-benefits of the liquid hydrogen economy and LNG economy: Advances in LNG integrating LH2 production processes," Energy, Elsevier, vol. 301(C).
    18. Sánchez-Squella, Antonio & Flores, Ricardo & Burgos, Rolando & Morales, Felipe & Nader, Andrés & Valdivia-Lefort, Patricio, 2024. "99.6% efficiency DC-DC coupling for green hydrogen production using PEM electrolyzer, photovoltaic generation and battery storage operating in an off-grid area," Renewable Energy, Elsevier, vol. 237(PC).
    19. Asna Ashari, Parsa & Blind, Knut & Koch, Claudia, 2023. "Knowledge and technology transfer via publications, patents, standards: Exploring the hydrogen technological innovation system," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    20. Nkanyiso Msweli & Gideon Ude Nnachi & Coneth Graham Richards, 2025. "A Review of Green Hydrogen Technologies and Their Role in Enabling Sustainable Energy Access in Remote and Off-Grid Areas Within Sub-Saharan Africa," Energies, MDPI, vol. 18(18), pages 1-21, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:398-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.