Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.09.127
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
- Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).
- Zhang, Jinliang & Wei, Yiming & Tan, Zhongfu, 2020. "An adaptive hybrid model for short term wind speed forecasting," Energy, Elsevier, vol. 190(C).
- Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
- Kalogirou, Soteris A. & Florides, Georgios A. & Pouloupatis, Panayiotis D. & Christodoulides, Paul & Joseph-Stylianou, Josephina, 2015. "Artificial neural networks for the generation of a conductivity map of the ground," Renewable Energy, Elsevier, vol. 77(C), pages 400-407.
- Zhang, Yu & Zhang, Yanjun & Yu, Hai & Li, Jianming & Xie, Yangyang & Lei, Zhihong, 2020. "Geothermal resource potential assessment of Fujian Province, China, based on geographic information system (GIS) -supported models," Renewable Energy, Elsevier, vol. 153(C), pages 564-579.
- Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
- Hu, Shuai & Xiang, Yue & Huo, Da & Jawad, Shafqat & Liu, Junyong, 2021. "An improved deep belief network based hybrid forecasting method for wind power," Energy, Elsevier, vol. 224(C).
- Yuebing Xu & Jing Zhang & Zuqiang Long & Yan Chen, 2018. "A Novel Dual-Scale Deep Belief Network Method for Daily Urban Water Demand Forecasting," Energies, MDPI, vol. 11(5), pages 1-15, April.
- Yanjun Zhang & Ling Zhou & Zhongjun Hu & Ziwang Yu & Shuren Hao & Zhihong Lei & Yangyang Xie, 2018. "Prediction of Layered Thermal Conductivity Using Artificial Neural Network in Order to Have Better Design of Ground Source Heat Pump System," Energies, MDPI, vol. 11(7), pages 1-25, July.
- Xia, Liangyu & Zhang, Yabo, 2019. "An overview of world geothermal power generation and a case study on China—The resource and market perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 411-423.
- Kalogirou, Soteris A. & Florides, Georgios A. & Pouloupatis, Panayiotis D. & Panayides, Ioannis & Joseph-Stylianou, Josephina & Zomeni, Zomenia, 2012. "Artificial neural networks for the generation of geothermal maps of ground temperature at various depths by considering land configuration," Energy, Elsevier, vol. 48(1), pages 233-240.
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Shejiao Wang & Jiahong Yan & Feng Li & Junwen Hu & Kewen Li, 2016. "Exploitation and Utilization of Oilfield Geothermal Resources in China," Energies, MDPI, vol. 9(10), pages 1-13, September.
- Li, Jinchao & Wu, Qianqian & Tian, Yu & Fan, Liguo, 2021. "Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network," Energy, Elsevier, vol. 227(C).
- Xin Wang & Tongjun Chen & Hui Xu, 2020. "Thickness Distribution Prediction for Tectonically Deformed Coal with a Deep Belief Network: A Case Study," Energies, MDPI, vol. 13(5), pages 1-14, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yongzhu Xiong & Mingyong Zhu & Yongyi Li & Kekun Huang & Yankui Chen & Jingqing Liao, 2022. "Recognition of Geothermal Surface Manifestations: A Comparison of Machine Learning and Deep Learning," Energies, MDPI, vol. 15(8), pages 1-29, April.
- Zhang, Linzuo & Liang, Xiujuan & Yang, Weifei & Jia, Zilong & Xiao, Changlai & Zhang, Jiang & Dai, Rongkun & Feng, Bo & Fang, Zhang, 2025. "Identification of the formation temperature field by explainable artificial intelligence: A case study of Songyuan City, China," Energy, Elsevier, vol. 319(C).
- Hadavimoghaddam, Fahimeh & Amiri-Ramsheh, Behnam & Atashrouz, Saeid & Abedi, Ali & Mohaddespour, Ahmad & Ostadhassan, Mehdi & Hemmati-Sarapardeh, Abdolhossein, 2024. "Modeling CO2 loading capacity of triethanolamine (TEA) aqueous solutions via a deep learning approach," Energy, Elsevier, vol. 313(C).
- Wanli Gao & Jingtao Zhao & Suping Peng, 2022. "UNet–Based Temperature Simulation of Hot Dry Rock in the Gonghe Basin," Energies, MDPI, vol. 15(17), pages 1-17, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chengqing, Yu & Guangxi, Yan & Chengming, Yu & Yu, Zhang & Xiwei, Mi, 2023. "A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks," Energy, Elsevier, vol. 263(PE).
- Zhang, Linzuo & Liang, Xiujuan & Yang, Weifei & Jia, Zilong & Xiao, Changlai & Zhang, Jiang & Dai, Rongkun & Feng, Bo & Fang, Zhang, 2025. "Identification of the formation temperature field by explainable artificial intelligence: A case study of Songyuan City, China," Energy, Elsevier, vol. 319(C).
- Tahmasebifar, Reza & Moghaddam, Mohsen Parsa & Sheikh-El-Eslami, Mohammad Kazem & Kheirollahi, Reza, 2020. "A new hybrid model for point and probabilistic forecasting of wind power," Energy, Elsevier, vol. 211(C).
- Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
- Laiqing Yan & Zutai Yan & Zhenwen Li & Ning Ma & Ran Li & Jian Qin, 2023. "Electricity Market Price Prediction Based on Quadratic Hybrid Decomposition and THPO Algorithm," Energies, MDPI, vol. 16(13), pages 1-18, July.
- Liu, Hui & Yang, Rui & Wang, Tiantian & Zhang, Lei, 2021. "A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections," Renewable Energy, Elsevier, vol. 165(P1), pages 573-594.
- Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
- Wang, Zengli & Shao, Hua & Shao, Mingcheng & Dai, Zeyu & Zhang, Rao, 2024. "Thermodynamic analysis of a coupled system based on total flow cycle and partially evaporated organic Rankine cycle for hot dry rock utilization," Renewable Energy, Elsevier, vol. 225(C).
- Aslam, Sheraz & Herodotou, Herodotos & Mohsin, Syed Muhammad & Javaid, Nadeem & Ashraf, Nouman & Aslam, Shahzad, 2021. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Zhou, Yilin & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2022. "Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
- Lu, Renzhi & Bai, Ruichang & Huang, Yuan & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2021. "Data-driven real-time price-based demand response for industrial facilities energy management," Applied Energy, Elsevier, vol. 283(C).
- Castello, Oleksandr & Resta, Marina, 2025. "Univariate and multivariate forecasting of the electricity futures curve using Dynamic Recurrent Neural Networks," Applied Energy, Elsevier, vol. 394(C).
- Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
- Grzegorz Marcjasz, 2020. "Forecasting Electricity Prices Using Deep Neural Networks: A Robust Hyper-Parameter Selection Scheme," Energies, MDPI, vol. 13(18), pages 1-18, September.
- Banaś, Jan & Utnik-Banaś, Katarzyna, 2021. "Evaluating a seasonal autoregressive moving average model with an exogenous variable for short-term timber price forecasting," Forest Policy and Economics, Elsevier, vol. 131(C).
- Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
- Arsalan Masood & Ubaid Ahmed & Syed Zulqadar Hassan & Ahsan Raza Khan & Anzar Mahmood, 2025. "Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review," Sustainability, MDPI, vol. 17(6), pages 1-42, March.
- Ershen Wang & Caimiao Sun & Chuanyun Wang & Pingping Qu & Yufeng Huang & Tao Pang, 2021. "A satellite selection algorithm based on adaptive simulated annealing particle swarm optimization for the BeiDou Navigation Satellite System/Global Positioning System receiver," International Journal of Distributed Sensor Networks, , vol. 17(7), pages 15501477211, July.
- Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:32-42. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp32-42.html