IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p664-d1580933.html
   My bibliography  Save this article

A Time Series Decomposition-Based Interpretable Electricity Price Forecasting Method

Author

Listed:
  • Yuanke Cu

    (Guizhou Qianyuan Electric Power Co., Ltd., Guiyang 550002, China)

  • Kaishu Wang

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Key Laboratory of Digital River Basin Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
    Institute of Water Resources and Hydropower, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Lechen Zhang

    (China Electric Power Research Institute Co., Ltd., Hangzhou 310030, China)

  • Zixuan Liu

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Key Laboratory of Digital River Basin Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
    Institute of Water Resources and Hydropower, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yixuan Liu

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Key Laboratory of Digital River Basin Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
    Institute of Water Resources and Hydropower, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Li Mo

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Key Laboratory of Digital River Basin Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
    Institute of Water Resources and Hydropower, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Electricity price forecasting is of significant practical importance, and improving prediction accuracy has become a key area of focus. Although substantial progress has been made in electricity price forecasting research, the unique characteristics of the electricity market make prices highly sensitive to even minor market changes. This results in prices exhibiting long-term trends while also experiencing sharp fluctuations due to sudden events, often leading to extreme values. Furthermore, most current models are “black-box” models, lacking transparency and interpretability. These unique features make electricity price forecasting particularly complex and challenging. This paper introduces a forecasting framework that incorporates the Seasonal Trend decomposition using Loess (STL), Gated Recurrent Unit (GRU), Light Gradient Boosting Machine (LightGBM), and Shapley Additive Explanations (SHAPs) and applies it to forecasting in the electricity markets of the United States and Australia. The proposed forecasting framework significantly improves prediction accuracy compared to nine other baseline models, especially in terms of RMSE and R 2 metrics, while also providing clear insights into the factors influencing the forecasts. On the U.S. dataset, the RMSE of this framework is 12.7% lower than that of the second-best model, while, on the Australian dataset, the RMSE of the SLGSEF is 2.58% lower than that of the second-best model.

Suggested Citation

  • Yuanke Cu & Kaishu Wang & Lechen Zhang & Zixuan Liu & Yixuan Liu & Li Mo, 2025. "A Time Series Decomposition-Based Interpretable Electricity Price Forecasting Method," Energies, MDPI, vol. 18(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:664-:d:1580933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).
    2. Sulandari, Winita & Subanar, & Lee, Muhammad Hisyam & Rodrigues, Paulo Canas, 2020. "Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks," Energy, Elsevier, vol. 190(C).
    3. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Andrei V. Chukalin & Vladimir N. Klyachkin & Vladimir P. Tabakov & Denis A. Demidov, 2024. "Applied Machine Learning to Study the Movement of Air Masses in the Wind Farm Area," Energies, MDPI, vol. 17(16), pages 1-27, August.
    4. Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
    5. Zhang, Jinliang & Wei, Yiming & Tan, Zhongfu, 2020. "An adaptive hybrid model for short term wind speed forecasting," Energy, Elsevier, vol. 190(C).
    6. Stefano Frizzo Stefenon & Laio Oriel Seman & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2023. "Aggregating Prophet and Seasonal Trend Decomposition for Time Series Forecasting of Italian Electricity Spot Prices," Energies, MDPI, vol. 16(3), pages 1-18, January.
    7. Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
    8. Dash, Ganesh & Paul, Justin, 2021. "CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ciaran O’Connor & Mohamed Bahloul & Steven Prestwich & Andrea Visentin, 2025. "A Review of Electricity Price Forecasting Models in the Day-Ahead, Intra-Day, and Balancing Markets," Energies, MDPI, vol. 18(12), pages 1-40, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique," Energies, MDPI, vol. 16(18), pages 1-23, September.
    2. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    3. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    4. Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.
    5. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    6. Banaś, Jan & Utnik-Banaś, Katarzyna, 2021. "Evaluating a seasonal autoregressive moving average model with an exogenous variable for short-term timber price forecasting," Forest Policy and Economics, Elsevier, vol. 131(C).
    7. Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
    8. Ershen Wang & Caimiao Sun & Chuanyun Wang & Pingping Qu & Yufeng Huang & Tao Pang, 2021. "A satellite selection algorithm based on adaptive simulated annealing particle swarm optimization for the BeiDou Navigation Satellite System/Global Positioning System receiver," International Journal of Distributed Sensor Networks, , vol. 17(7), pages 15501477211, July.
    9. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    10. Yang, Weifei & Xiao, Changlai & Zhang, Zhihao & Liang, Xiujuan, 2022. "Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network," Renewable Energy, Elsevier, vol. 182(C), pages 32-42.
    11. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    12. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    13. Dorel Mihai Paraschiv & Narciz Balasoiu & Souhir Ben-Amor & Raul Cristian Bag, 2023. "Hybridising Neurofuzzy Model the Seasonal Autoregressive Models for Electricity Price Forecasting on Germany’s Spot Market," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 463-463, April.
    14. Liang, Yang & Zhang, Dongqin & Zhang, Jize & Hu, Gang, 2024. "A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model," Energy, Elsevier, vol. 313(C).
    15. Li, Jinchao & Wu, Qianqian & Tian, Yu & Fan, Liguo, 2021. "Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network," Energy, Elsevier, vol. 227(C).
    16. Chengqing, Yu & Guangxi, Yan & Chengming, Yu & Yu, Zhang & Xiwei, Mi, 2023. "A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks," Energy, Elsevier, vol. 263(PE).
    17. Zhou, Yilin & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2022. "Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    18. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    19. Xiong, Xiaoping & Qing, Guohua, 2023. "A hybrid day-ahead electricity price forecasting framework based on time series," Energy, Elsevier, vol. 264(C).
    20. Yin, Linfei & Qiu, Yao, 2022. "Neural network dynamic differential control for long-term price guidance mechanism of flexible energy service providers," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:664-:d:1580933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.