IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224032523.html
   My bibliography  Save this article

Modeling CO2 loading capacity of triethanolamine (TEA) aqueous solutions via a deep learning approach

Author

Listed:
  • Hadavimoghaddam, Fahimeh
  • Amiri-Ramsheh, Behnam
  • Atashrouz, Saeid
  • Abedi, Ali
  • Mohaddespour, Ahmad
  • Ostadhassan, Mehdi
  • Hemmati-Sarapardeh, Abdolhossein

Abstract

Capturing carbon dioxide (CO2) from natural gas is essential for reducing CO2 emissions as a greenhouse gas as well as increasing the gas heating value. Absorption of CO2 by amine solutions is a method that has seen a widespread use as a CO2 collection technique. In this research, advanced ML approaches are utilized to simulate the CO2 loading capacity of triethanolamine (TEA) aqueous solutions as a function of system temperature, CO2 partial pressure, and amine concentration in the aqueous phase. Deep neural network (DNN), Gaussian process regressor (GPR), deep belief network (DBN), and bagging regressor (BR) are the models that have been developed. The DNN model with the coefficient of determination (R2) of 0.9990 as well as the root mean square error (RMSE) of 0.0073 outperformed other models in terms of accuracy and validity. The R2 values of 0.9911, 0.9861, and 0.9745 for DBN, BR, and GPR, accordingly, showed that other models could likewise perform with high accuracy. Moreover, trend analysis of the results confirmed that the DNN method can correctly estimate the behavior of CO2 loading with variations in the input parameters. Furthermore, sensitivity analysis showed that temperature has a decreasing effect on the CO2 loading, while amine concentration and CO2 partial pressure exhibited to have an incremental effect. Herein, the temperature had the greatest influence on the amount of CO2 loading. The final stage of the research was the leverage approach, which stated that about 99 % of the data are statistically valid and the DNN model is reliable to be replaced by experimental approaches in the prediction of CO2 absorption into certain type of solutions.

Suggested Citation

  • Hadavimoghaddam, Fahimeh & Amiri-Ramsheh, Behnam & Atashrouz, Saeid & Abedi, Ali & Mohaddespour, Ahmad & Ostadhassan, Mehdi & Hemmati-Sarapardeh, Abdolhossein, 2024. "Modeling CO2 loading capacity of triethanolamine (TEA) aqueous solutions via a deep learning approach," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224032523
    DOI: 10.1016/j.energy.2024.133476
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    2. Fu, Guoyin, 2018. "Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system," Energy, Elsevier, vol. 148(C), pages 269-282.
    3. Yang, Weifei & Xiao, Changlai & Zhang, Zhihao & Liang, Xiujuan, 2022. "Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network," Renewable Energy, Elsevier, vol. 182(C), pages 32-42.
    4. Hemmati-Sarapardeh, Abdolhossein & Varamesh, Amir & Husein, Maen M. & Karan, Kunal, 2018. "On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 313-329.
    5. Andrew Gordon Wilson & David A. Knowles & Zoubin Ghahramani, 2011. "Gaussian Process Regression Networks," Papers 1110.4411, arXiv.org.
    6. Sun, Xianke & Wang, Gaoliang & Xu, Liuyang & Yuan, Honglei & Yousefi, Nasser, 2021. "Optimal estimation of the PEM fuel cells applying deep belief network optimized by improved archimedes optimization algorithm," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    2. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    3. Yancai Xiao & Ruolan Dai & Guangjian Zhang & Weijia Chen, 2017. "The Use of an Improved LSSVM and Joint Normalization on Temperature Prediction of Gearbox Output Shaft in DFWT," Energies, MDPI, vol. 10(11), pages 1-13, November.
    4. Nader Karballaeezadeh & Farah Zaremotekhases & Shahaboddin Shamshirband & Amir Mosavi & Narjes Nabipour & Peter Csiba & Annamária R. Várkonyi-Kóczy, 2020. "Intelligent Road Inspection with Advanced Machine Learning; Hybrid Prediction Models for Smart Mobility and Transportation Maintenance Systems," Energies, MDPI, vol. 13(7), pages 1-22, April.
    5. Yongzhu Xiong & Mingyong Zhu & Yongyi Li & Kekun Huang & Yankui Chen & Jingqing Liao, 2022. "Recognition of Geothermal Surface Manifestations: A Comparison of Machine Learning and Deep Learning," Energies, MDPI, vol. 15(8), pages 1-29, April.
    6. Fathy, Ahmed & Rezk, Hegazy & Alharbi, Abdullah G. & Yousri, Dalia, 2023. "Proton exchange membrane fuel cell model parameters identification using Chaotically based-bonobo optimizer," Energy, Elsevier, vol. 268(C).
    7. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    9. Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan," Energy, Elsevier, vol. 240(C).
    10. Liu, Xuefeng & Huang, Bin & Zheng, Yulan, 2023. "Control strategy for dynamic operation of multiple chillers under random load constraints," Energy, Elsevier, vol. 270(C).
    11. Zhang, Xiao-Han & Zhu, Qun-Xiong & He, Yan-Lin & Xu, Yuan, 2018. "A novel robust ensemble model integrated extreme learning machine with multi-activation functions for energy modeling and analysis: Application to petrochemical industry," Energy, Elsevier, vol. 162(C), pages 593-602.
    12. Liu, Jingxuan & Zang, Haixiang & Zhang, Fengchun & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation," Renewable Energy, Elsevier, vol. 219(P1).
    13. Guangheng Qi & Ning Ma & Kai Wang, 2024. "Predicting the Remaining Useful Life of Supercapacitors under Different Operating Conditions," Energies, MDPI, vol. 17(11), pages 1-16, May.
    14. Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Jamei, Mehdi & Ahmadianfar, Iman, 2020. "A rigorous model for prediction of viscosity of oil-based hybrid nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    16. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Enas Taha Sayed & Mohammad Ali Abdelkareem, 2023. "Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms," Energies, MDPI, vol. 16(14), pages 1-20, July.
    17. Naveed, Muhammad Hamza & Khan, Muhammad Nouman Aslam & Mukarram, Muhammad & Naqvi, Salman Raza & Abdullah, Abdullah & Haq, Zeeshan Ul & Ullah, Hafeez & Mohamadi, Hamad Al, 2024. "Cellulosic biomass fermentation for biofuel production: Review of artificial intelligence approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Li, Naiqing & Li, Longhao & Zhang, Fan & Jiao, Ticao & Wang, Shuang & Liu, Xuefeng & Wu, Xinghua, 2023. "Research on short-term photovoltaic power prediction based on multi-scale similar days and ESN-KELM dual core prediction model," Energy, Elsevier, vol. 277(C).
    19. Zhang, Jinliang & Siya, Wang & Zhongfu, Tan & Anli, Sun, 2023. "An improved hybrid model for short term power load prediction," Energy, Elsevier, vol. 268(C).
    20. Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Li, Wenqiang & Peng, Pei, 2021. "A hybrid deep transfer learning strategy for short term cross-building energy prediction," Energy, Elsevier, vol. 215(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224032523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.