IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp1419-1430.html
   My bibliography  Save this article

Comparison of biodiesel production using a novel porous Zn/Al/Co complex oxide prepared from different methods: Physicochemical properties, reaction kinetic and thermodynamic studies

Author

Listed:
  • Sun, Chihe
  • Hu, Yun
  • Sun, Fubao
  • Sun, Yahui
  • Song, Guojie
  • Chang, Haixing
  • Lunprom, Siriporn

Abstract

The use of heterogeneous catalysts in the transesterification reaction is an eco-friendly and cost-effective approach for biodiesel production as compared to the homogeneous catalyst-based processes. In this study, a heterogeneous cobalt doping Zn/Al complex oxide was prepared by a simple birch-templating method, and successfully applied to the transesterification of jatropha oil with methanol. The catalyst had strong diffraction peaks of ZnAl2O4 spinel crystal with substitutional doping of amorphous cobalt atom. It had a tendency to achieve a high base strength whilst increasing the specific surface area in the presence of cobalt. By contrast to the impregnation and coprecipitation methods, the crystalline particles from templating method were uniformly distributed on the catalyst surface, thus forming a well-defined tiled network with large amounts of grain-free pores. The exposure of available activity sites resulted in a biodiesel yield of 91.4%. After used several times and recycled, the regenerated catalyst also exhibited good catalytic potency without obvious deactivation. The transesterification kinetics satisfied the Pseudo first order model that controlled by the reaction temperature and catalyst dosage. The thermodynamic parameters of ΔH of 16.7 kJ/mol, ΔS of −284.6 J/mol/K, and ΔG of 140.0 kJ/mol suggested an endothermic, endergonic, and non-spontaneous nature of the reaction.

Suggested Citation

  • Sun, Chihe & Hu, Yun & Sun, Fubao & Sun, Yahui & Song, Guojie & Chang, Haixing & Lunprom, Siriporn, 2022. "Comparison of biodiesel production using a novel porous Zn/Al/Co complex oxide prepared from different methods: Physicochemical properties, reaction kinetic and thermodynamic studies," Renewable Energy, Elsevier, vol. 181(C), pages 1419-1430.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:1419-1430
    DOI: 10.1016/j.renene.2021.09.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812101449X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ning, Yilin & Niu, Shengli & Wang, Yongzheng & Zhao, Jianli & Lu, Chunmei, 2021. "Sono-modified halloysite nanotube with NaAlO2 as novel heterogeneous catalyst for biodiesel production: Optimization via GA_BP neural network," Renewable Energy, Elsevier, vol. 175(C), pages 391-404.
    2. Takeno, Mitsuo L. & Mendonça, Iasmin M. & Barros, Silma de S. & de Sousa Maia, Paulo J. & Pessoa Jr., Wanison A.G. & Souza, Mayane P. & Soares, Elzalina R. & Bindá, Rosane dos S. & Calderaro, Fábio L., 2021. "A novel CaO-based catalyst obtained from silver croaker (Plagioscion squamosissimus) stone for biodiesel synthesis: Waste valorization and process optimization," Renewable Energy, Elsevier, vol. 172(C), pages 1035-1045.
    3. Suryajaya, Stefanus Kevin & Mulyono, Yohanes Ricky & Santoso, Shella Permatasari & Yuliana, Maria & Kurniawan, Alfin & Ayucitra, Aning & Sun, Yueting & Hartono, Sandy Budi & Soetaredjo, Felycia Edi & , 2021. "Iron (II) impregnated double-shelled hollow mesoporous silica as acid-base bifunctional catalyst for the conversion of low-quality oil to methyl esters," Renewable Energy, Elsevier, vol. 169(C), pages 1166-1174.
    4. Xia, Ao & Sun, Chihe & Fu, Qian & Liao, Qiang & Huang, Yun & Zhu, Xun & Li, Qing, 2020. "Biofuel production from wet microalgae biomass: Comparison of physicochemical properties and extraction performance," Energy, Elsevier, vol. 212(C).
    5. Leesing, Ratanaporn & Siwina, Siraprapha & Fiala, Khanittha, 2021. "Yeast-based biodiesel production using sulfonated carbon-based solid acid catalyst by an integrated biorefinery of durian peel waste," Renewable Energy, Elsevier, vol. 171(C), pages 647-657.
    6. Xie, Wenlei & Gao, Chunli & Li, Jiangbo, 2021. "Sustainable biodiesel production from low-quantity oils utilizing H6PV3MoW8O40 supported on magnetic Fe3O4/ZIF-8 composites," Renewable Energy, Elsevier, vol. 168(C), pages 927-937.
    7. Shu, Qing & Gao, Jixian & Nawaz, Zeeshan & Liao, Yuhui & Wang, Dezheng & Wang, Jinfu, 2010. "Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst," Applied Energy, Elsevier, vol. 87(8), pages 2589-2596, August.
    8. Abdelmigeed, Mai O. & Al-Sakkari, Eslam G. & Hefney, Mahmoud S. & Ismail, Fatma M. & Ahmed, Tamer S. & Ismail, Ibrahim M., 2021. "Biodiesel production catalyzed by NaOH/Magnetized ZIF-8: Yield improvement using methanolysis and catalyst reusability enhancement," Renewable Energy, Elsevier, vol. 174(C), pages 253-261.
    9. Adepoju, T.F. & Ibeh, M.A. & Udoetuk, E.N. & Babatunde, E.O., 2021. "Quaternary blend of Carica papaya - Citrus sinesis - Hibiscus sabdariffa - Waste used oil for biodiesel synthesis using CaO-based catalyst derived from binary mix of Lattorina littorea and Mactra cora," Renewable Energy, Elsevier, vol. 171(C), pages 22-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    2. Atelge, M.R., 2022. "Production of biodiesel and hydrogen by using a double-function heterogeneous catalyst derived from spent coffee grounds and its thermodynamic analysis," Renewable Energy, Elsevier, vol. 198(C), pages 1-15.
    3. Sahar, Juma & Farooq, Muhammad & Ramli, Anita & Naeem, Abdul & Khattak, Noor Saeed & Ghazi, Zahid Ali, 2022. "Highly efficient heteropoly acid decorated SnO2@Co-ZIF nanocatalyst for sustainable biodiesel production from Nannorrhops ritchiana seeds oil," Renewable Energy, Elsevier, vol. 198(C), pages 306-318.
    4. Sannagoudar Basanagoudar, Arun & Maleki, Basir & Prakash Ravikumar, Mithun & Mounesh, & Kuppe, Pramoda & Kalanakoppal Venkatesh, Yatish, 2024. "Exploitation of Annona reticulata leaf extract for the synthesis of CeO2 nanoparticles as catalyst for the production of biodiesel using seed oil thereof," Energy, Elsevier, vol. 298(C).
    5. El yaakouby, Ichraq & Rhrissi, Ilyass & Abouliatim, Youness & Hlaibi, Miloudi & Kamil, Noureddine, 2023. "Moroccan sardine scales as a novel and renewable source of heterogeneous catalyst for biodiesel production using palm fatty acid distillate," Renewable Energy, Elsevier, vol. 217(C).
    6. Karmakar, Bisheswar & Pal, Sucharita & Gopikrishna, Konga & Tiwari, Onkar Nath & Halder, Gopinath, 2022. "Injection of superheated C1 and C3 alcohols in non-edible Pongamia pinnata oil for semi-continuous uncatalyzed biodiesel synthesis," Renewable Energy, Elsevier, vol. 185(C), pages 850-861.
    7. Arun, S.B & Karthik, B.M & Yatish, K.V & Prashanth, K.N & Balakrishna, Geetha R., 2023. "Green synthesis of copper oxide nanoparticles using the Bombax ceiba plant: Biodiesel production and nano-additive to investigate diesel engine performance-emission characteristics," Energy, Elsevier, vol. 274(C).
    8. Maleki, Basir & Ashraf Talesh, S. Siamak, 2024. "Sustainable biodiesel production from wild oak (Quercus brantii Lindl) oil as a novel and potential feedstock via highly efficient Co@CuO nanocatalyst: RSM optimization and CI engine assessment," Renewable Energy, Elsevier, vol. 224(C).
    9. Yuan, Zong & Zhu, Jishen & Lu, Jie & Li, Yueyun & Ding, Jincheng, 2024. "Preparation of biodiesel by transesterification of castor oil catalyzed by flaky halloysite supported ZnO/SnO2 heterojunction photocatalyst," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahar, Juma & Farooq, Muhammad & Ramli, Anita & Naeem, Abdul & Khattak, Noor Saeed & Ghazi, Zahid Ali, 2022. "Highly efficient heteropoly acid decorated SnO2@Co-ZIF nanocatalyst for sustainable biodiesel production from Nannorrhops ritchiana seeds oil," Renewable Energy, Elsevier, vol. 198(C), pages 306-318.
    2. Xie, Wenlei & Wang, Xiangxiang & Guo, Lihong, 2024. "Utilization of Keplerate-type polyoxomolybdates {Mo132} supported on hierarchical porous SOM-ZIF-8 as reusable catalyst boosts biodiesel production from acidic soybean oils by simultaneous transesteri," Renewable Energy, Elsevier, vol. 225(C).
    3. Nie, Yifan & Hou, Qidong & Qian, Hengli & Bai, Xinyu & Xia, Tianliang & Lai, Ruite & Yu, Guanjie & Rehman, Mian Laiq Ur & Ju, Meiting, 2022. "Synthesis of mesoporous sulfonated carbon from chicken bones to boost rapid conversion of 5-hydroxymethylfurfural and carbohydrates to 5-ethoxymethylfurfural," Renewable Energy, Elsevier, vol. 192(C), pages 279-288.
    4. Feng, Weiliang & Tie, Xinlong & Duan, Xiaoling & Yan, Su & Fang, Si & Sun, Peiyong & Gan, Lin & Wang, Tielin, 2023. "Covalent immobilization of phosphotungstic acid and amino acid on metal-organic frameworks with different structures: Acid-base bifunctional heterogeneous catalyst for the production of biodiesel from," Renewable Energy, Elsevier, vol. 210(C), pages 26-39.
    5. El yaakouby, Ichraq & Rhrissi, Ilyass & Abouliatim, Youness & Hlaibi, Miloudi & Kamil, Noureddine, 2023. "Moroccan sardine scales as a novel and renewable source of heterogeneous catalyst for biodiesel production using palm fatty acid distillate," Renewable Energy, Elsevier, vol. 217(C).
    6. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    7. Zhang, Gaoqiang & Xie, Wenlei, 2024. "Hierarchical porous SAPO-34 decorated with Mo and W oxides for concurrent transesterification-esterifications for efficient biodiesel production from acidic soybean oil," Renewable Energy, Elsevier, vol. 222(C).
    8. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    9. Subramonia Pillai, N. & Kannan, P. Seeni & Vettivel, S.C. & Suresh, S., 2017. "Optimization of transesterification of biodiesel using green catalyst derived from Albizia Lebbeck Pods by mixture design," Renewable Energy, Elsevier, vol. 104(C), pages 185-196.
    10. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    11. Fernanda Pereira Martins & Fabio Avila Rodrigues & Marcio Jose Silva, 2018. "Fe 2 (SO 4 ) 3 -Catalyzed Levulinic Acid Esterification: Production of Fuel Bioadditives," Energies, MDPI, vol. 11(5), pages 1-11, May.
    12. Yu, Hewei & Cao, Yunlong & Li, Heyao & Zhao, Gaiju & Zhang, Xingyu & Cheng, Shen & Wei, Wei, 2021. "An efficient heterogeneous acid catalyst derived from waste ginger straw for biodiesel production," Renewable Energy, Elsevier, vol. 176(C), pages 533-542.
    13. Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
    14. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    15. Chattopadhyay, Soham & Karemore, Ankush & Das, Sancharini & Deysarkar, Asoke & Sen, Ramkrishna, 2011. "Biocatalytic production of biodiesel from cottonseed oil: Standardization of process parameters and comparison of fuel characteristics," Applied Energy, Elsevier, vol. 88(4), pages 1251-1256, April.
    16. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    17. Dawodu, Folasegun A. & Ayodele, Olubunmi & Xin, Jiayu & Zhang, Suojiang & Yan, Dongxia, 2014. "Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst," Applied Energy, Elsevier, vol. 114(C), pages 819-826.
    18. Chattopadhyay, Soham & Sen, Ramkrishna, 2013. "Fuel properties, engine performance and environmental benefits of biodiesel produced by a green process," Applied Energy, Elsevier, vol. 105(C), pages 319-326.
    19. Cheng, Yuan & Liu, Yao & Zhang, Junhua & Huang, Rulu & Wang, Yue & Cao, Shuwan & He, Liang & Peng, Lincai, 2022. "Acetic acid-regulated mesoporous zirconium-furandicarboxylate hybrid with high lewis acidity and lewis basicity for efficient conversion of furfural to furfuryl alcohol," Renewable Energy, Elsevier, vol. 184(C), pages 115-123.
    20. Wang, Quan & Wenlei Xie, & Guo, Lihong, 2022. "Molybdenum and zirconium oxides supported on KIT-6 silica: A recyclable composite catalyst for one–pot biodiesel production from simulated low-quality oils," Renewable Energy, Elsevier, vol. 187(C), pages 907-922.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:1419-1430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.