IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v198y2022icp306-318.html
   My bibliography  Save this article

Highly efficient heteropoly acid decorated SnO2@Co-ZIF nanocatalyst for sustainable biodiesel production from Nannorrhops ritchiana seeds oil

Author

Listed:
  • Sahar, Juma
  • Farooq, Muhammad
  • Ramli, Anita
  • Naeem, Abdul
  • Khattak, Noor Saeed
  • Ghazi, Zahid Ali

Abstract

In this study, TPA-impregnated SnO2@Co-ZIF catalyst was synthesized to employ for biodiesel production from locally available Mazari palm feedstock. The morphological and structural properties of the synthesized catalyst were studied by different analytical techniques such as Thermal gravimetric analysis (TGA/DTA), X-Ray diffraction analysis (XRD), Scanning electron microscopy (SEM), Energy dispersive X-Ray (EDX) analysis, Fourier transform infrared spectroscopy (FT-IR), Brunauer Emmett Teller (BET) and Temperature Programmed Desorption of ammonia (NH3–TPD) and carbon dioxide (CO2–TPD) to identify suitable catalyst formulation for efficient biodiesel production from Mazari palm oil.

Suggested Citation

  • Sahar, Juma & Farooq, Muhammad & Ramli, Anita & Naeem, Abdul & Khattak, Noor Saeed & Ghazi, Zahid Ali, 2022. "Highly efficient heteropoly acid decorated SnO2@Co-ZIF nanocatalyst for sustainable biodiesel production from Nannorrhops ritchiana seeds oil," Renewable Energy, Elsevier, vol. 198(C), pages 306-318.
  • Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:306-318
    DOI: 10.1016/j.renene.2022.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Chihe & Hu, Yun & Sun, Fubao & Sun, Yahui & Song, Guojie & Chang, Haixing & Lunprom, Siriporn, 2022. "Comparison of biodiesel production using a novel porous Zn/Al/Co complex oxide prepared from different methods: Physicochemical properties, reaction kinetic and thermodynamic studies," Renewable Energy, Elsevier, vol. 181(C), pages 1419-1430.
    2. Mendonça, Iasmin M. & Paes, Orlando A.R.L. & Maia, Paulo J.S. & Souza, Mayane P. & Almeida, Richardson A. & Silva, Cláudia C. & Duvoisin, Sérgio & de Freitas, Flávio A., 2019. "New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study," Renewable Energy, Elsevier, vol. 130(C), pages 103-110.
    3. Abdelmigeed, Mai O. & Al-Sakkari, Eslam G. & Hefney, Mahmoud S. & Ismail, Fatma M. & Abdelghany, Amr & Ahmed, Tamer S. & Ismail, Ibrahim M., 2021. "Magnetized ZIF-8 impregnated with sodium hydroxide as a heterogeneous catalyst for high-quality biodiesel production," Renewable Energy, Elsevier, vol. 165(P1), pages 405-419.
    4. Sitepu, Eko K. & Heimann, Kirsten & Raston, Colin L. & Zhang, Wei, 2020. "Critical evaluation of process parameters for direct biodiesel production from diverse feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    5. Baskar, G. & Gurugulladevi, A. & Nishanthini, T. & Aiswarya, R. & Tamilarasan, K., 2017. "Optimization and kinetics of biodiesel production from Mahua oil using manganese doped zinc oxide nanocatalyst," Renewable Energy, Elsevier, vol. 103(C), pages 641-646.
    6. Xie, Wenlei & Wang, Hao, 2020. "Immobilized polymeric sulfonated ionic liquid on core-shell structured Fe3O4/SiO2 composites: A magnetically recyclable catalyst for simultaneous transesterification and esterifications of low-cost oi," Renewable Energy, Elsevier, vol. 145(C), pages 1709-1719.
    7. Eevera, T. & Rajendran, K. & Saradha, S., 2009. "Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions," Renewable Energy, Elsevier, vol. 34(3), pages 762-765.
    8. Eldiehy, Khalifa S.H. & Gohain, Minakshi & Daimary, Niran & Borah, Doljit & Mandal, Manabendra & Deka, Dhanapati, 2022. "Radish (Raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and Scenedesmus obliquus oil," Renewable Energy, Elsevier, vol. 191(C), pages 888-901.
    9. Mehdi Hosseini & Ali Nikbakht & Meisam Tabatabaei, 2012. "Biodiesel Production in Batch Tank Reactor Equipped to Helical Ribbon-like Agitator," Modern Applied Science, Canadian Center of Science and Education, vol. 6(3), pages 1-40, March.
    10. Xie, Wenlei & Gao, Chunli & Li, Jiangbo, 2021. "Sustainable biodiesel production from low-quantity oils utilizing H6PV3MoW8O40 supported on magnetic Fe3O4/ZIF-8 composites," Renewable Energy, Elsevier, vol. 168(C), pages 927-937.
    11. Razmjoo, A. & Gakenia Kaigutha, L. & Vaziri Rad, M.A. & Marzband, M. & Davarpanah, A. & Denai, M., 2021. "A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area," Renewable Energy, Elsevier, vol. 164(C), pages 46-57.
    12. Abdelmigeed, Mai O. & Al-Sakkari, Eslam G. & Hefney, Mahmoud S. & Ismail, Fatma M. & Ahmed, Tamer S. & Ismail, Ibrahim M., 2021. "Biodiesel production catalyzed by NaOH/Magnetized ZIF-8: Yield improvement using methanolysis and catalyst reusability enhancement," Renewable Energy, Elsevier, vol. 174(C), pages 253-261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yujiao & Niu, Shengli & Hao, Yanan & Liu, Sitong & Liu, Jisen & Han, Kuihua & Wang, Yongzheng & Lu, Chunmei, 2023. "Preparation of SrZrAl multiple oxide catalyst for produce biodiesel from acidified palm oil," Renewable Energy, Elsevier, vol. 207(C), pages 116-127.
    2. Karimian, A. & Pourhoseini, S.H. & Nozari, A., 2023. "Persica Akhani Salicornia as novel biodiesel feedstock production for economic prosperity in salty and water scarcity areas: Optimized oil extraction process and transesterification reaction using new," Renewable Energy, Elsevier, vol. 211(C), pages 361-369.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Weiliang & Tie, Xinlong & Duan, Xiaoling & Yan, Su & Fang, Si & Sun, Peiyong & Gan, Lin & Wang, Tielin, 2023. "Covalent immobilization of phosphotungstic acid and amino acid on metal-organic frameworks with different structures: Acid-base bifunctional heterogeneous catalyst for the production of biodiesel from," Renewable Energy, Elsevier, vol. 210(C), pages 26-39.
    2. Wang, Quan & Wenlei Xie, & Guo, Lihong, 2022. "Molybdenum and zirconium oxides supported on KIT-6 silica: A recyclable composite catalyst for one–pot biodiesel production from simulated low-quality oils," Renewable Energy, Elsevier, vol. 187(C), pages 907-922.
    3. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    4. Abdelmigeed, Mai O. & Al-Sakkari, Eslam G. & Hefney, Mahmoud S. & Ismail, Fatma M. & Abdelghany, Amr & Ahmed, Tamer S. & Ismail, Ibrahim M., 2021. "Magnetized ZIF-8 impregnated with sodium hydroxide as a heterogeneous catalyst for high-quality biodiesel production," Renewable Energy, Elsevier, vol. 165(P1), pages 405-419.
    5. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Xie, Wenlei & Gao, Chunli & Li, Jiangbo, 2021. "Sustainable biodiesel production from low-quantity oils utilizing H6PV3MoW8O40 supported on magnetic Fe3O4/ZIF-8 composites," Renewable Energy, Elsevier, vol. 168(C), pages 927-937.
    7. Sun, Chihe & Hu, Yun & Sun, Fubao & Sun, Yahui & Song, Guojie & Chang, Haixing & Lunprom, Siriporn, 2022. "Comparison of biodiesel production using a novel porous Zn/Al/Co complex oxide prepared from different methods: Physicochemical properties, reaction kinetic and thermodynamic studies," Renewable Energy, Elsevier, vol. 181(C), pages 1419-1430.
    8. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    9. Wang, Yue & Liu, Huai & Zhang, Junhua & Cheng, Yuan & Lin, Wansi & Huang, Rulu & Peng, Lincai, 2022. "Direct epitaxial synthesis of magnetic biomass derived acid/base bifunctional zirconium-based hybrid for catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone," Renewable Energy, Elsevier, vol. 197(C), pages 911-921.
    10. Miladinović, Marija R. & Zdujić, Miodrag V. & Veljović, Djordje N. & Krstić, Jugoslav B. & Banković-Ilić, Ivana B. & Veljković, Vlada B. & Stamenković, Olivera S., 2020. "Valorization of walnut shell ash as a catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 147(P1), pages 1033-1043.
    11. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    12. Silviu Nate & Yuriy Bilan & Mariia Kurylo & Olena Lyashenko & Piotr Napieralski & Ganna Kharlamova, 2021. "Mineral Policy within the Framework of Limited Critical Resources and a Green Energy Transition," Energies, MDPI, vol. 14(9), pages 1-32, May.
    13. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    14. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    15. Karmakar, Bisheswar & Pal, Sucharita & Gopikrishna, Konga & Tiwari, Onkar Nath & Halder, Gopinath, 2022. "Injection of superheated C1 and C3 alcohols in non-edible Pongamia pinnata oil for semi-continuous uncatalyzed biodiesel synthesis," Renewable Energy, Elsevier, vol. 185(C), pages 850-861.
    16. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    17. Azeem, Muhammad Waqar & Hanif, Muhammad Asif & Al-Sabahi, Jamal Nasar & Khan, Asif Ali & Naz, Saima & Ijaz, Aliya, 2016. "Production of biodiesel from low priced, renewable and abundant date seed oil," Renewable Energy, Elsevier, vol. 86(C), pages 124-132.
    18. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    19. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    20. Rozina, & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nasir & Lu, Houfang, 2017. "Biodiesel synthesis from Saussurea heteromalla (D.Don) Hand-Mazz integrating ethanol production using biorefinery approach," Energy, Elsevier, vol. 141(C), pages 1810-1818.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:306-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.