IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp1144-1155.html
   My bibliography  Save this article

An efficient and low-cost DMPPT approach for photovoltaic submodule based on multi-port DC converter

Author

Listed:
  • Zhang, Tao
  • Jiang, Jiahui
  • Chen, Daolian

Abstract

Solar energy is one of the most promising energy types, but photovoltaic (PV) mismatches have several negative effects. Finding an efficient and low-cost method to reduce or eliminate the power loss caused by the mismatch in PV power generation systems is necessary. In this paper, we propose a PV submodule-distributed maximum power point tracking (DMPPT) scheme based on a multi-port DC converter. In-depth analysis and research are performed on the PV model and mismatch characteristics, the PV module voltage equalization (VE) strategy, and implementation with the multi-port buck–boost converter. We discuss the trade-off between true DMPPT and VE on control overhead and tracking accuracy, and a detailed derivation is created to illustrate the differences between them. The VE can reduce the cost and complexity of the system at the expense of a small PV energy capture. The proposed implementation reduces the number of semiconductor components and current sensors, which is conducive to the integrated design of the hardware. A prototype based on a multi-port buck–boost converter for a 36 V/200 W PV module was designed and built. The feasibility and progress of the proposed scheme were verified through experiments.

Suggested Citation

  • Zhang, Tao & Jiang, Jiahui & Chen, Daolian, 2021. "An efficient and low-cost DMPPT approach for photovoltaic submodule based on multi-port DC converter," Renewable Energy, Elsevier, vol. 178(C), pages 1144-1155.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1144-1155
    DOI: 10.1016/j.renene.2021.06.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121010016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fouad, M.M. & Shihata, Lamia A. & Morgan, ElSayed I., 2017. "An integrated review of factors influencing the perfomance of photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1499-1511.
    2. Atsu, Divine & Seres, Istvan & Aghaei, Mohammadreza & Farkas, Istvan, 2020. "Analysis of long-term performance and reliability of PV modules under tropical climatic conditions in sub-Saharan," Renewable Energy, Elsevier, vol. 162(C), pages 285-295.
    3. Sai Krishna, G. & Moger, Tukaram, 2021. "A novel adaptive dynamic photovoltaic reconfiguration system to mitigate mismatch effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Tabanjat, Abdulkader & Becherif, Mohamed & Hissel, Daniel, 2015. "Reconfiguration solution for shaded PV panels using switching control," Renewable Energy, Elsevier, vol. 82(C), pages 4-13.
    5. Ramli, Mohd Zulkifli & Salam, Zainal, 2019. "Performance evaluation of dc power optimizer (DCPO) for photovoltaic (PV) system during partial shading," Renewable Energy, Elsevier, vol. 139(C), pages 1336-1354.
    6. Malathy, S. & Ramaprabha, R., 2018. "Reconfiguration strategies to extract maximum power from photovoltaic array under partially shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2922-2934.
    7. Han, Changwoon & Lee, Hyeonseok, 2018. "Investigation and modeling of long-term mismatch loss of photovoltaic array," Renewable Energy, Elsevier, vol. 121(C), pages 521-527.
    8. Ghosh, Santosh & Yadav, Vinod Kumar & Mukherjee, Vivekananda, 2019. "Improvement of partial shading resilience of PV array though modified bypass arrangement," Renewable Energy, Elsevier, vol. 143(C), pages 1079-1093.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    2. Chen, X.M. & Li, Y. & Zhao, B.Y. & Wang, R.Z., 2020. "Are the optimum angles of photovoltaic systems so important?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Aljafari, Belqasem & Satpathy, Priya Ranjan & Thanikanti, Sudhakar Babu, 2022. "Partial shading mitigation in PV arrays through dragonfly algorithm based dynamic reconfiguration," Energy, Elsevier, vol. 257(C).
    4. Fathy, Ahmed & Yousri, Dalia & Babu, Thanikanti Sudhakar & Rezk, Hegazy, 2023. "Triple X Sudoku reconfiguration for alleviating shading effect on total-cross-tied PV array," Renewable Energy, Elsevier, vol. 204(C), pages 593-604.
    5. Singh, Rashmi & Sharma, Madhu & Yadav, Kamlesh, 2022. "Degradation and reliability analysis of photovoltaic modules after operating for 12 years: A case study with comparisons," Renewable Energy, Elsevier, vol. 196(C), pages 1170-1186.
    6. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Astitva Kumar & Mohammad Rizwan & Uma Nangia & Muhannad Alaraj, 2021. "Grey Wolf Optimizer-Based Array Reconfiguration to Enhance Power Production from Solar Photovoltaic Plants under Different Scenarios," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    8. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    9. Abdalqader Ahmad & Helena Navarro & Saikat Ghosh & Yulong Ding & Jatindra Nath Roy, 2021. "Evaluation of New PCM/PV Configurations for Electrical Energy Efficiency Improvement through Thermal Management of PV Systems," Energies, MDPI, vol. 14(14), pages 1-18, July.
    10. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    11. Chan, Lok Shun, 2022. "Neighbouring shading effect on photovoltaic panel system: Its implication to green building certification scheme," Renewable Energy, Elsevier, vol. 188(C), pages 476-490.
    12. Ali Faisal Murtaza & Hadeed Ahmed Sher & Filippo Spertino & Alessandro Ciocia & Abdullah M. Noman & Abdullrahman A. Al-Shamma’a & Abdulaziz Alkuhayli, 2021. "A Novel MPPT Technique Based on Mutual Coordination between Two PV Modules/Arrays," Energies, MDPI, vol. 14(21), pages 1-15, October.
    13. Ahmed Al Mansur & Md. Ruhul Amin & Molla Shahadat Hossain Lipu & Md. Imamul Islam & Ratil H. Ashique & Zubaeer Bin Shams & Mohammad Asif ul Haq & Md. Hasan Maruf & ASM Shihavuddin, 2023. "The Effects of Non-Uniformly-Aged Photovoltaic Array on Mismatch Power Loss: A Practical Investigation towards Novel Hybrid Array Configurations," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
    14. Murugesan, Palpandian & David, Prince Winston & Murugesan, Pravin & Periyasamy, Pounraj, 2023. "Battery based mismatch reduction technique for partial shaded solar PV system," Energy, Elsevier, vol. 272(C).
    15. Exley, G. & Hernandez, R.R. & Page, T. & Chipps, M. & Gambro, S. & Hersey, M. & Lake, R. & Zoannou, K.-S. & Armstrong, A., 2021. "Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Calcabrini, Andres & Muttillo, Mirco & Weegink, Raoul & Manganiello, Patrizio & Zeman, Miro & Isabella, Olindo, 2021. "A fully reconfigurable series-parallel photovoltaic module for higher energy yields in urban environments," Renewable Energy, Elsevier, vol. 179(C), pages 1-11.
    17. Boccalatte, A. & Fossa, M. & Ménézo, C., 2020. "Best arrangement of BIPV surfaces for future NZEB districts while considering urban heat island effects and the reduction of reflected radiation from solar façades," Renewable Energy, Elsevier, vol. 160(C), pages 686-697.
    18. Ghoname Abdullah & Hidekazu Nishimura, 2021. "Techno-Economic Performance Analysis of a 40.1 kWp Grid-Connected Photovoltaic (GCPV) System after Eight Years of Energy Generation: A Case Study for Tochigi, Japan," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    19. Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.
    20. Mao, Mingxuan & Chen, Siyu & Yan, Jinyue, 2023. "Modelling pavement photovoltaic arrays with cellular automata," Applied Energy, Elsevier, vol. 330(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1144-1155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.