IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v257y2022ics036054422201698x.html
   My bibliography  Save this article

Partial shading mitigation in PV arrays through dragonfly algorithm based dynamic reconfiguration

Author

Listed:
  • Aljafari, Belqasem
  • Satpathy, Priya Ranjan
  • Thanikanti, Sudhakar Babu

Abstract

The susceptibility of the PV array towards partial shading has raised a major reliability concern for efficient power generation. The partial shading forces the arrays to generate lower power along with forming non-convex curves causing complicated operation of power tracking algorithms. Hence, to reduce the losses, various conventional configurations and reconfiguration techniques exist with vulnerabilities in terms of reliable power enhancement and complexity. In this paper, a highly reliable, less complex, and fast array reconfiguration based on the Dragonfly algorithm (DA) optimization with a higher power enhancement capability, lower computational time, and hasty convergence is proposed for unwanted shading losses reduction in arrays. The effectiveness of the proposed reconfiguration is evaluated against conventional configurations and three pre-existing reconfiguration techniques under various artificial shading cases via power generation, losses, and efficiencies using simulation and experimental analysis for 3 × 3 and 9 × 9 arrays. From the conducted analysis, it has been established that the DA reconfiguration has 22%, 10.10%, 15.36%, 5.85%, 2.95%, 2.55%, and 1.07% higher power generation than the conventional configurations, electrical reconfiguration, SD-PAR, Sudoku, GA, PSO, and EAR respectively with reduced switches counts.

Suggested Citation

  • Aljafari, Belqasem & Satpathy, Priya Ranjan & Thanikanti, Sudhakar Babu, 2022. "Partial shading mitigation in PV arrays through dragonfly algorithm based dynamic reconfiguration," Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:energy:v:257:y:2022:i:c:s036054422201698x
    DOI: 10.1016/j.energy.2022.124795
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201698X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Satpathy, Priya Ranjan & Sharma, Renu, 2018. "Power loss reduction in partially shaded PV arrays by a static SDP technique," Energy, Elsevier, vol. 156(C), pages 569-585.
    2. Deshkar, Shubhankar Niranjan & Dhale, Sumedh Bhaskar & Mukherjee, Jishnu Shekar & Babu, T. Sudhakar & Rajasekar, N., 2015. "Solar PV array reconfiguration under partial shading conditions for maximum power extraction using genetic algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 102-110.
    3. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    4. Bouselham, Loubna & Rabhi, Abdelhamid & Hajji, Bekkay & Mellit, Adel, 2021. "Photovoltaic array reconfiguration method based on fuzzy logic and recursive least squares: An experimental validation," Energy, Elsevier, vol. 232(C).
    5. Sai Krishna, G. & Moger, Tukaram, 2021. "A novel adaptive dynamic photovoltaic reconfiguration system to mitigate mismatch effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Satpathy, Priya Ranjan & Sharma, Renu & Dash, Sambit, 2019. "An efficient SD-PAR technique for maximum power generation from modules of partially shaded PV arrays," Energy, Elsevier, vol. 175(C), pages 182-194.
    7. Satpathy, Priya Ranjan & Sharma, Renu & Jena, Sasmita, 2017. "A shade dispersion interconnection scheme for partially shaded modules in a solar PV array network," Energy, Elsevier, vol. 139(C), pages 350-365.
    8. Rezk, Hegazy & Fathy, Ahmed & Abdelaziz, Almoataz Y., 2017. "A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 377-386.
    9. Mohammad Nor Rafiq Nazeri & Mohammad Faridun Naim Tajuddin & Thanikanti Sudhakar Babu & Azralmukmin Azmi & Maria Malvoni & Nallapaneni Manoj Kumar, 2021. "Firefly Algorithm-Based Photovoltaic Array Reconfiguration for Maximum Power Extraction during Mismatch Conditions," Sustainability, MDPI, vol. 13(6), pages 1-30, March.
    10. Malathy, S. & Ramaprabha, R., 2018. "Reconfiguration strategies to extract maximum power from photovoltaic array under partially shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2922-2934.
    11. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    12. Kamran Ali Khan Niazi & Yongheng Yang & Mashood Nasir & Dezso Sera, 2019. "Evaluation of Interconnection Configuration Schemes for PV Modules with Switched-Inductor Converters under Partial Shading Conditions," Energies, MDPI, vol. 12(14), pages 1-12, July.
    13. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaoshun & Meng, Die & Cai, Jiahui & Zhang, Guiyuan & Yu, Tao & Pan, Feng & Yang, Yuyao, 2023. "A swarm based double Q-learning for optimal PV array reconfiguration with a coordinated control of hydrogen energy storage system," Energy, Elsevier, vol. 266(C).
    2. Belqasem Aljafari & Priya Ranjan Satpathy & Siva Rama Krishna Madeti & Pradeep Vishnuram & Sudhakar Babu Thanikanti, 2022. "Reliability Enhancement of Photovoltaic Systems under Partial Shading through a Two-Step Module Placement Approach," Energies, MDPI, vol. 15(20), pages 1-27, October.
    3. Satpathy, Priya Ranjan & Aljafari, Belqasem & Thanikanti, Sudhakar Babu & Sharma, Renu, 2023. "An efficient power extraction technique for improved performance and reliability of solar PV arrays during partial shading," Energy, Elsevier, vol. 282(C).
    4. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    5. Mao, Mingxuan & Chen, Siyu & Zhao, Liuqing & Feng, Xinying & Ma, Fuping, 2023. "Pavement PV array reconfiguration strategy based on traveling salesman problem," Energy, Elsevier, vol. 284(C).
    6. Ahmed Al Mansur & Md. Ruhul Amin & Molla Shahadat Hossain Lipu & Md. Imamul Islam & Ratil H. Ashique & Zubaeer Bin Shams & Mohammad Asif ul Haq & Md. Hasan Maruf & ASM Shihavuddin, 2023. "The Effects of Non-Uniformly-Aged Photovoltaic Array on Mismatch Power Loss: A Practical Investigation towards Novel Hybrid Array Configurations," Sustainability, MDPI, vol. 15(17), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    3. Pillai, Dhanup S. & Ram, J. Prasanth & Shabunko, Veronika & Kim, Young-Jin, 2021. "A new shade dispersion technique compatible for symmetrical and unsymmetrical photovoltaic (PV) arrays," Energy, Elsevier, vol. 225(C).
    4. Satpathy, Priya Ranjan & Sharma, Renu & Dash, Sambit, 2019. "An efficient SD-PAR technique for maximum power generation from modules of partially shaded PV arrays," Energy, Elsevier, vol. 175(C), pages 182-194.
    5. Ahmad, Riaz & Murtaza, Ali F. & Sher, Hadeed Ahmed, 2019. "Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 82-102.
    6. Belqasem Aljafari & Rupendra Kumar Pachauri & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2023. "Innovative Methodologies for Higher Global MPP of Photovoltaic Arrays under PSCs: Experimental Validation," Sustainability, MDPI, vol. 15(15), pages 1-28, August.
    7. Luis D. Murillo-Soto & Carlos Meza, 2021. "Automated Fault Management System in a Photovoltaic Array: A Reconfiguration-Based Approach," Energies, MDPI, vol. 14(9), pages 1-19, April.
    8. Yadav, Anurag Singh & Mukherjee, V., 2021. "Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review," Renewable Energy, Elsevier, vol. 178(C), pages 977-1005.
    9. Mehedi, I.M. & Salam, Z. & Ramli, M.Z. & Chin, V.J. & Bassi, H. & Rawa, M.J.H. & Abdullah, M.P., 2021. "Critical evaluation and review of partial shading mitigation methods for grid-connected PV system using hardware solutions: The module-level and array-level approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Fathy, Ahmed & Yousri, Dalia & Babu, Thanikanti Sudhakar & Rezk, Hegazy, 2023. "Triple X Sudoku reconfiguration for alleviating shading effect on total-cross-tied PV array," Renewable Energy, Elsevier, vol. 204(C), pages 593-604.
    11. Ahmad, R. & Murtaza, Ali F. & Ahmed Sher, Hadeed & Tabrez Shami, Umar & Olalekan, Saheed, 2017. "An analytical approach to study partial shading effects on PV array supported by literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 721-732.
    12. Astitva Kumar & Mohammad Rizwan & Uma Nangia & Muhannad Alaraj, 2021. "Grey Wolf Optimizer-Based Array Reconfiguration to Enhance Power Production from Solar Photovoltaic Plants under Different Scenarios," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    13. Bouselham, Loubna & Rabhi, Abdelhamid & Hajji, Bekkay & Mellit, Adel, 2021. "Photovoltaic array reconfiguration method based on fuzzy logic and recursive least squares: An experimental validation," Energy, Elsevier, vol. 232(C).
    14. Li, Shaowu, 2016. "Linear equivalent models at the maximum power point based on variable weather parameters for photovoltaic cell," Applied Energy, Elsevier, vol. 182(C), pages 94-104.
    15. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    16. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    17. Abu Eldahab, Yasser E. & Saad, Naggar H. & Zekry, Abdalhalim, 2017. "Enhancing the tracking techniques for the global maximum power point under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1173-1183.
    18. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    19. Zhang, Tao & Jiang, Jiahui & Chen, Daolian, 2021. "An efficient and low-cost DMPPT approach for photovoltaic submodule based on multi-port DC converter," Renewable Energy, Elsevier, vol. 178(C), pages 1144-1155.
    20. Yadav, Anurag Singh & Mukherjee, V., 2022. "Comprehensive investigation of various bypass diode associations for killer-SuDoKu PV array under several shading conditions," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:257:y:2022:i:c:s036054422201698x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.