IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v43y2015icp102-110.html
   My bibliography  Save this article

Solar PV array reconfiguration under partial shading conditions for maximum power extraction using genetic algorithm

Author

Listed:
  • Deshkar, Shubhankar Niranjan
  • Dhale, Sumedh Bhaskar
  • Mukherjee, Jishnu Shekar
  • Babu, T. Sudhakar
  • Rajasekar, N.

Abstract

The contribution of renewable energy to the field of energy markets has been substantial over the last few years. A large number of PV array installations show the increasing contribution of solar energy to the renewable energy. Partial shading of the PV arrays is one of the most discussed and worked upon concept for the simple reasons that it decreases the power output of the PV array installations and exhibits multiple peaks in the I–V characteristics. As a result, the modules have to be reconfigured to get the maximum power output. This papers presents an optimization based approach for Total cross tied (TCT) connected modules in a PV array. The physical locations of the modules remain unchanged while the electrical connections are altered. The genetic algorithm (GA) as an optimization tool, gives the connection matrix for the new electrical interconnection which fetches the maximum power output from the PV array. This is done to obtain uniform dispersion of shadow throughout the panel.

Suggested Citation

  • Deshkar, Shubhankar Niranjan & Dhale, Sumedh Bhaskar & Mukherjee, Jishnu Shekar & Babu, T. Sudhakar & Rajasekar, N., 2015. "Solar PV array reconfiguration under partial shading conditions for maximum power extraction using genetic algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 102-110.
  • Handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:102-110
    DOI: 10.1016/j.rser.2014.10.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211400923X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.10.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gautam, Nalin K. & Kaushika, N.D., 2002. "An efficient algorithm to simulate the electrical performance of solar photovoltaic arrays," Energy, Elsevier, vol. 27(4), pages 347-361.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekaterina Engel & Igor Kovalev & Nikolay Testoyedov & Nikita E. Engel, 2021. "Intelligent Reconfigurable Photovoltaic System," Energies, MDPI, vol. 14(23), pages 1-11, November.
    2. Potnuru, Srinivasa Rao & Pattabiraman, Dinesh & Ganesan, Saravana Ilango & Chilakapati, Nagamani, 2015. "Positioning of PV panels for reduction in line losses and mismatch losses in PV array," Renewable Energy, Elsevier, vol. 78(C), pages 264-275.
    3. Yadav, Anurag Singh & Mukherjee, V., 2021. "Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review," Renewable Energy, Elsevier, vol. 178(C), pages 977-1005.
    4. Hamidat, A. & Benyoucef, B., 2009. "Systematic procedures for sizing photovoltaic pumping system, using water tank storage," Energy Policy, Elsevier, vol. 37(4), pages 1489-1501, April.
    5. Wang, Yaw-Juen & Hsu, Po-Chun, 2011. "An investigation on partial shading of PV modules with different connection configurations of PV cells," Energy, Elsevier, vol. 36(5), pages 3069-3078.
    6. Jiang, Joe-Air & Wang, Jen-Cheng & Kuo, Kun-Chang & Su, Yu-Li & Shieh, Jyh-Cherng & Chou, Jui-Jen, 2012. "Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions," Energy, Elsevier, vol. 44(1), pages 292-301.
    7. Satpathy, Priya Ranjan & Jena, Sasmita & Sharma, Renu, 2018. "Power enhancement from partially shaded modules of solar PV arrays through various interconnections among modules," Energy, Elsevier, vol. 144(C), pages 839-850.
    8. Kadri, Riad & Andrei, Horia & Gaubert, Jean-Paul & Ivanovici, Traian & Champenois, Gérard & Andrei, Paul, 2012. "Modeling of the photovoltaic cell circuit parameters for optimum connection model and real-time emulator with partial shadow conditions," Energy, Elsevier, vol. 42(1), pages 57-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:102-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.