IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v78y2015icp264-275.html

Positioning of PV panels for reduction in line losses and mismatch losses in PV array

Author

Listed:
  • Potnuru, Srinivasa Rao
  • Pattabiraman, Dinesh
  • Ganesan, Saravana Ilango
  • Chilakapati, Nagamani

Abstract

Partial shading decreases the power output of PV arrays due to mismatch losses. These losses are dependent on the shading pattern and the relative positions of shaded modules in the array. Various static and dynamic reconfiguration techniques have earlier been proposed to mitigate these losses. In an earlier proposed static reconfiguration technique, the power generation is enhanced by altering the physical location of the PV panels using a random Sudoku configuration without modifying the TCT (Total-Cross-Tied) based electrical connections. However, this arrangement faces drawbacks due to ineffective dispersion of shade and significant increase in wiring required. In this work, an optimal Sudoku arrangement to overcome these drawbacks is formulated. Further analysis indicate that the global peak of the optimal Sudoku based PV array occurs as the right most peak in the curve for most shading conditions, thus evidently obviating the need for complex MPPT (Maximum-Power-Point-Tracking) algorithms. The proposed configuration is compared with various other existing reconfiguration schemes in terms of power output and the comparison is presented. In addition, a general formulation is proposed to expand this pattern to any generic array. A strategy is also proposed to make such an interconnection practicable for very large size PV arrays.

Suggested Citation

  • Potnuru, Srinivasa Rao & Pattabiraman, Dinesh & Ganesan, Saravana Ilango & Chilakapati, Nagamani, 2015. "Positioning of PV panels for reduction in line losses and mismatch losses in PV array," Renewable Energy, Elsevier, vol. 78(C), pages 264-275.
  • Handle: RePEc:eee:renene:v:78:y:2015:i:c:p:264-275
    DOI: 10.1016/j.renene.2014.12.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114008933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.12.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gautam, Nalin K. & Kaushika, N.D., 2002. "An efficient algorithm to simulate the electrical performance of solar photovoltaic arrays," Energy, Elsevier, vol. 27(4), pages 347-361.
    2. Kaushika, N.D. & Rai, Anil K., 2007. "An investigation of mismatch losses in solar photovoltaic cell networks," Energy, Elsevier, vol. 32(5), pages 755-759.
    3. Ishaque, Kashif & Salam, Zainal & Shamsudin, Amir & Amjad, Muhammad, 2012. "A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 99(C), pages 414-422.
    4. Indu Rani, B. & Saravana Ilango, G. & Nagamani, C., 2012. "Power flow management algorithm for photovoltaic systems feeding DC/AC loads," Renewable Energy, Elsevier, vol. 43(C), pages 267-275.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yaw-Juen & Hsu, Po-Chun, 2011. "An investigation on partial shading of PV modules with different connection configurations of PV cells," Energy, Elsevier, vol. 36(5), pages 3069-3078.
    2. Jiang, Joe-Air & Wang, Jen-Cheng & Kuo, Kun-Chang & Su, Yu-Li & Shieh, Jyh-Cherng & Chou, Jui-Jen, 2012. "Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions," Energy, Elsevier, vol. 44(1), pages 292-301.
    3. Daraban, Stefan & Petreus, Dorin & Morel, Cristina, 2014. "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, Elsevier, vol. 74(C), pages 374-388.
    4. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    5. Rajesh, R. & Mabel, M. Carolin, 2016. "Design and real time implementation of a novel rule compressed fuzzy logic method for the determination operating point in a photo voltaic system," Energy, Elsevier, vol. 116(P1), pages 140-153.
    6. Obeidi, Nabil & Kermadi, Mostefa & Belmadani, Bachir & Allag, Abdelkrim & Achour, Lazhar & Mesbahi, Nadhir & Mekhilef, Saad, 2023. "A modified current sensorless approach for maximum power point tracking of partially shaded photovoltaic systems," Energy, Elsevier, vol. 263(PA).
    7. Siaw, Fei-Lu & Chong, Kok-Keong & Wong, Chee-Woon, 2014. "A comprehensive study of dense-array concentrator photovoltaic system using non-imaging planar concentrator," Renewable Energy, Elsevier, vol. 62(C), pages 542-555.
    8. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    9. Mehdi Tavakkoli & Jafar Adabi & Sasan Zabihi & Radu Godina & Edris Pouresmaeil, 2018. "Reserve Allocation of Photovoltaic Systems to Improve Frequency Stability in Hybrid Power Systems," Energies, MDPI, vol. 11(10), pages 1-19, September.
    10. Indu Rani, B. & Srikanth, M. & Saravana Ilango, G. & Nagamani, C., 2013. "An active islanding detection technique for current controlled inverter," Renewable Energy, Elsevier, vol. 51(C), pages 189-196.
    11. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    12. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    13. Nabil Obeidi & Mostefa Kermadi & Bachir Belmadani & Abdelkarim Allag & Lazhar Achour & Saad Mekhilef, 2022. "A Current Sensorless Control of Buck-Boost Converter for Maximum Power Point Tracking in Photovoltaic Applications," Energies, MDPI, vol. 15(20), pages 1-21, October.
    14. Han, Changwoon & Lee, Hyeonseok, 2018. "Investigation and modeling of long-term mismatch loss of photovoltaic array," Renewable Energy, Elsevier, vol. 121(C), pages 521-527.
    15. Carrero, C. & Ramirez, D. & Rodríguez, J. & Castillo-Sierra, R., 2021. "Sensitivity analysis of loss resistances variations of PV generators applied to the assessment of maximum power point changes due to degradation," Renewable Energy, Elsevier, vol. 173(C), pages 351-361.
    16. Ekaterina Engel & Igor Kovalev & Nikolay Testoyedov & Nikita E. Engel, 2021. "Intelligent Reconfigurable Photovoltaic System," Energies, MDPI, vol. 14(23), pages 1-11, November.
    17. Alexandro Ortiz & Efrain Mendez & Israel Macias & Arturo Molina, 2022. "Earthquake Algorithm-Based Voltage Referenced MPPT Implementation through a Standardized Validation Frame," Energies, MDPI, vol. 15(23), pages 1-24, November.
    18. Shen, Lu & Li, Zhenpeng & Ma, Tao, 2020. "Analysis of the power loss and quantification of the energy distribution in PV module," Applied Energy, Elsevier, vol. 260(C).
    19. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    20. Dobaria, Bhaveshkumar & Pandya, Mahesh & Aware, Mohan, 2016. "Analytical assessment of 5.05 kWp grid tied photovoltaic plant performance on the system level in a composite climate of western India," Energy, Elsevier, vol. 111(C), pages 47-51.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:78:y:2015:i:c:p:264-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.