IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp348-358.html
   My bibliography  Save this article

Improved biodiesel production from sludge palm oil catalyzed by a low-cost liquid lipase under low-input process conditions

Author

Listed:
  • Loh, Jun Mann
  • Amelia,
  • Gourich, Wail
  • Chew, Chien Lye
  • Song, Cher Pin
  • Chan, Eng-Seng

Abstract

Sludge palm oil is a by-product produced as a result of oil loss into waste streams during the palm oil milling process. It is non-edible, inexpensive and abundantly available, thus making it an attractive feedstock for biodiesel production. However, it contains high contents of water and free fatty acids, rendering the conventional alkali-catalyzed process unsuitable. Therefore, this research aimed to improve the production of biodiesel from sludge palm oil using a low-cost liquid lipase (Eversa® Transform 2.0) produced from a genetically modified Aspergillus oryzae. The activity of the liquid lipase was determined to be 9600 IU mL−1. We performed the reaction using low-input process conditions with only 0.2 wt% enzyme concentration and 5:1 methanol-to-oil molar ratio at a low operating temperature of 45 °C. Under an optimum stirring speed of 750 rpm, a crude biodiesel with a high ester content of approximately 94 wt% could be produced. Additionally, the crude glycerol produced has a higher purity compared to that produced via a chemical-catalyzed process. Overall, an economical and sustainable enzymatic process for the conversion of sludge palm oil into high quality biodiesel and glycerol has been demonstrated in this study.

Suggested Citation

  • Loh, Jun Mann & Amelia, & Gourich, Wail & Chew, Chien Lye & Song, Cher Pin & Chan, Eng-Seng, 2021. "Improved biodiesel production from sludge palm oil catalyzed by a low-cost liquid lipase under low-input process conditions," Renewable Energy, Elsevier, vol. 177(C), pages 348-358.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:348-358
    DOI: 10.1016/j.renene.2021.05.138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121008211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher, Lew P. & Hemanathan Kumar, & Zambare, Vasudeo P., 2014. "Enzymatic biodiesel: Challenges and opportunities," Applied Energy, Elsevier, vol. 119(C), pages 497-520.
    2. Jume, Binta Hadi & Gabris, Mohammad Ali & Rashidi Nodeh, Hamid & Rezania, Shahabaldin & Cho, Jinwoo, 2020. "Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles," Renewable Energy, Elsevier, vol. 162(C), pages 2182-2189.
    3. Binhayeeding, Narisa & Klomklao, Sappasith & Prasertsan, Poonsuk & Sangkharak, Kanokphorn, 2020. "Improvement of biodiesel production using waste cooking oil and applying single and mixed immobilised lipases on polyhydroxyalkanoate," Renewable Energy, Elsevier, vol. 162(C), pages 1819-1827.
    4. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    5. Bambase, Manolito E. & Almazan, Rober Angelo R. & Demafelis, Rex B. & Sobremisana, Marisa J. & Dizon, Lisa Stephanie H., 2021. "Biodiesel production from refined coconut oil using hydroxide-impregnated calcium oxide by cosolvent method," Renewable Energy, Elsevier, vol. 163(C), pages 571-578.
    6. Muanruksa, Papasanee & Kaewkannetra, Pakawadee, 2020. "Combination of fatty acids extraction and enzymatic esterification for biodiesel production using sludge palm oil as a low-cost substrate," Renewable Energy, Elsevier, vol. 146(C), pages 901-906.
    7. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "The effects of water on biodiesel production and refining technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3456-3470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ng, Wei Zhe & Chan, Eng-Seng & Gourich, Wail & Ooi, Chien Wei & Tey, Beng Ti & Song, Cher Pin, 2023. "Perspective on enzymatic production of renewable hydrocarbon fuel using algal fatty acid photodecarboxylase from Chlorella variabilis NC64A: Potentials and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Kamel Ariffin, Maryam Farhana & Idris, Ani, 2022. "Fe2O3/Chitosan coated superparamagnetic nanoparticles supporting lipase enzyme from Candida Antarctica for microwave assisted biodiesel production," Renewable Energy, Elsevier, vol. 185(C), pages 1362-1375.
    3. Huang, Shuai & Cui, Ziheng & Zhu, Ruisong & Chen, Changjing & Song, Shuyue & Song, Jianting & Wang, Meng & Tan, Tianwei, 2022. "Design and development of a new static mixing bioreactor for enzymatic bioprocess: Application in biodiesel production," Renewable Energy, Elsevier, vol. 197(C), pages 922-931.
    4. Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
    5. Ng, Wei Zhe & Obon, Aaron Anthony & Lee, Chin Loong & Ong, Yi Hui & Gourich, Wail & Maran, Kireshwen & Tang, Dennis Boon Yong & Song, Cher Pin & Chan, Eng-Seng, 2022. "Techno-economic analysis of enzymatic biodiesel co-produced in palm oil mills from sludge palm oil for improving renewable energy access in rural areas," Energy, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gourich, Wail & Chan, Eng-Seng & Ng, Wei Zhe & Obon, Aaron Anthony & Maran, Kireshwen & Ong, Yi Hui & Lee, Chin Loong & Tan, Jully & Song, Cher Pin, 2022. "Life cycle benefits of enzymatic biodiesel co-produced in palm oil mills from sludge palm oil as renewable fuel for rural electrification," Applied Energy, Elsevier, vol. 325(C).
    2. Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
    3. Sitepu, Eko K. & Heimann, Kirsten & Raston, Colin L. & Zhang, Wei, 2020. "Critical evaluation of process parameters for direct biodiesel production from diverse feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    4. Norouzian Baghani, Abbas & Sadjadi, Sodeh & Yaghmaeian, Kamyar & Hossein Mahvi, Amir & Yunesian, Masud & Nabizadeh, Ramin, 2022. "Solid alcohol biofuel based on waste cooking oil: Preparation, properties, micromorphology, heating value optimization and its application as candle wax," Renewable Energy, Elsevier, vol. 192(C), pages 617-630.
    5. Chuepeng, Sathaporn & Komintarachat, Cholada, 2018. "Interesterification optimization of waste cooking oil and ethyl acetate over homogeneous catalyst for biofuel production with engine validation," Applied Energy, Elsevier, vol. 232(C), pages 728-739.
    6. Juliana Gisele Corrêa Rodrigues & Fernanda Veras Cardoso & Celine Campos dos Santos & Rosiane Rodrigues Matias & Nélio Teixeira Machado & Sergio Duvoisin Junior & Patrícia Melchionna Albuquerque, 2023. "Biocatalyzed Transesterification of Waste Cooking Oil for Biodiesel Production Using Lipase from the Amazonian Fungus Endomelanconiopsis endophytica," Energies, MDPI, vol. 16(19), pages 1-19, October.
    7. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    8. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    9. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    10. Oliveira, Anne Caroline Defranceschi & Frensch, Gustavo & Marques, Francisco de Assis & Vargas, José Viriato Coelho & Rodrigues, Maria Luiza Fernandes & Mariano, André Bellin, 2020. "Production of methyl oleate by direct addition of fermented solid Penicillium sumatrense and Aspergillus fumigatus," Renewable Energy, Elsevier, vol. 162(C), pages 1132-1139.
    11. Karmakar, Bisheswar & Pal, Sucharita & Gopikrishna, Konga & Tiwari, Onkar Nath & Halder, Gopinath, 2022. "Injection of superheated C1 and C3 alcohols in non-edible Pongamia pinnata oil for semi-continuous uncatalyzed biodiesel synthesis," Renewable Energy, Elsevier, vol. 185(C), pages 850-861.
    12. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    13. Verónica Ávila Vázquez & Miguel Mauricio Aguilera Flores & Luis Felipe Hernández Casas & Nahum Andrés Medellín Castillo & Alejandro Rocha Uribe & Hans Christian Correa Aguado, 2023. "Biodiesel Production Catalyzed by Lipase Extract Powder of Leonotis nepetifolia (Christmas Candlestick) Seed," Energies, MDPI, vol. 16(6), pages 1-13, March.
    14. Li, Ying & Niu, Shengli & Wang, Jun & Zhou, Wenbo & Wang, Yongzheng & Han, Kuihua & Lu, Chunmei, 2022. "Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: Experimental and DFT studies," Renewable Energy, Elsevier, vol. 184(C), pages 164-175.
    15. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    16. Widdyaningsih, Liangna & Setiawan, Albert & Santoso, Shella Permatasari & Soetaredjo, Felycia Edi & Ismadji, Suryadi & Hartono, Sandy Budi & Ju, Yi-Hsu & Tran-Nguyen, Phuong Lan & Yuliana, Maria, 2020. "Feasibility study of nanocrystalline cellulose as adsorbent of steryl glucosides from palm-based biodiesel," Renewable Energy, Elsevier, vol. 154(C), pages 99-106.
    17. Melero, Juan A. & Bautista, L. Fernando & Morales, Gabriel & Iglesias, Jose & Sánchez-Vázquez, Rebeca, 2015. "Acid-catalyzed production of biodiesel over arenesulfonic SBA-15: Insights into the role of water in the reaction network," Renewable Energy, Elsevier, vol. 75(C), pages 425-432.
    18. Abdelmigeed, Mai O. & Al-Sakkari, Eslam G. & Hefney, Mahmoud S. & Ismail, Fatma M. & Abdelghany, Amr & Ahmed, Tamer S. & Ismail, Ibrahim M., 2021. "Magnetized ZIF-8 impregnated with sodium hydroxide as a heterogeneous catalyst for high-quality biodiesel production," Renewable Energy, Elsevier, vol. 165(P1), pages 405-419.
    19. Rattanaphra, Dussadee & Soodjit, Phansiri & Thanapimmetha, Anusith & Saisriyoot, Maythee & Srinophakun, Penjit, 2019. "Synthesis, characterization and catalytic activity studies of lanthanum oxide from Thai monazite ore for biodiesel production," Renewable Energy, Elsevier, vol. 131(C), pages 1128-1137.
    20. Ezzati, Rohollah & Ranjbar, Shahram & Soltanabadi, Azim, 2021. "Kinetics models of transesterification reaction for biodiesel production: A theoretical analysis," Renewable Energy, Elsevier, vol. 168(C), pages 280-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:348-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.