IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp2182-2189.html
   My bibliography  Save this article

Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles

Author

Listed:
  • Jume, Binta Hadi
  • Gabris, Mohammad Ali
  • Rashidi Nodeh, Hamid
  • Rezania, Shahabaldin
  • Cho, Jinwoo

Abstract

Waste cooking oil (WCO) is a potential and low-cost source for biodiesel production which has been used widely. In this study, novel nanocatalyst (GO@ZrO2–SrO) was synthesized via co-precipitation method by the combination of both potential graphene oxide and bimetal zirconium/strontium oxide nanoparticles. The proposed nanocomposite showed a promising ability as a heterogeneous catalyst for the transesterification of WCO to produce FAMEs as biodiesel. The FTIR, SEM/EDX and XRD were used for the characterization of nanocatalyst to evaluate the surface functional groups, nanostructure/elements and crystallinity, respectively. The effective parameters on the transesterification FAMEs yield including oil to alcohol ratio, reaction time, and reaction temperature were studied. Based on the results, the maximum FAMEs yield of 91% was obtained in the conditions of the material ratio of 1:0.5 (w/w) of GO:ZrO2–SrO, oil to methanol ratio (1:4), the reaction time of 90 min and the temperature of 120 °C. Therefore, this study showed that GO@ZrO2–SrO can be used as an alternative potential heterogeneous catalyst to produce biodiesel from WCO.

Suggested Citation

  • Jume, Binta Hadi & Gabris, Mohammad Ali & Rashidi Nodeh, Hamid & Rezania, Shahabaldin & Cho, Jinwoo, 2020. "Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles," Renewable Energy, Elsevier, vol. 162(C), pages 2182-2189.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2182-2189
    DOI: 10.1016/j.renene.2020.10.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120316128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hosseini, Shokoufe & Moradi, G.R. & Bahrami, Kiumars, 2019. "Synthesis of a novel stabilized basic ionic liquid through immobilization on boehmite nanoparticles: A robust nanocatalyst for biodiesel production from soybean oil," Renewable Energy, Elsevier, vol. 138(C), pages 70-78.
    2. Zhang, Rongyan & Zhu, Fenfen & Dong, Yi & Wu, Xuemin & Sun, Yihe & Zhang, Dongrui & Zhang, Tao & Han, Meiling, 2020. "Function promotion of SO42−/Al2O3–SnO2 catalyst for biodiesel production from sewage sludge," Renewable Energy, Elsevier, vol. 147(P1), pages 275-283.
    3. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    4. Marchetti, J.M. & Miguel, V.U. & Errazu, A.F., 2007. "Possible methods for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1300-1311, August.
    5. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    6. Laureano Costarrosa & David Eduardo Leiva-Candia & Antonio José Cubero-Atienza & Juan José Ruiz & M. Pilar Dorado, 2018. "Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology," Energies, MDPI, vol. 11(2), pages 1-9, January.
    7. Arumugam, A. & Sankaranarayanan, Pooja, 2020. "Biodiesel production and parameter optimization: An approach to utilize residual ash from sugarcane leaf, a novel heterogeneous catalyst, from Calophyllum inophyllum oil," Renewable Energy, Elsevier, vol. 153(C), pages 1272-1282.
    8. Naor, Efrat Ohayon & Koberg, Miri & Gedanken, Aharon, 2017. "Nonaqueous synthesis of SrO nanopowder and SrO/SiO2 composite and their application for biodiesel production via microwave irradiation," Renewable Energy, Elsevier, vol. 101(C), pages 493-499.
    9. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    10. Das, Velentina & Tripathi, Abhishek Mani & Borah, Manash Jyoti & Dunford, Nurhan Turgut & Deka, Dhanapati, 2020. "Cobalt-doped CaO catalyst synthesized and applied for algal biodiesel production," Renewable Energy, Elsevier, vol. 161(C), pages 1110-1119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rezania, Shahabaldin & Korrani, Zahra Sotoudehnia & Gabris, Mohammad Ali & Cho, Jinwoo & Yadav, Krishna Kumar & Cabral-Pinto, Marina M.S. & Alam, Javed & Ahamed, Maqusood & Nodeh, Hamid Rashidi, 2021. "Lanthanum phosphate foam as novel heterogeneous nanocatalyst for biodiesel production from waste cooking oil," Renewable Energy, Elsevier, vol. 176(C), pages 228-236.
    2. Ebadinezhad, Behzad & Haghighi, Mohammad & Zeinalzadeh, Hossein, 2022. "Carbon-templated meso-design of nanostructured CeAPSO-34 for biodiesel production from free fatty acid and waste oil," Renewable Energy, Elsevier, vol. 195(C), pages 716-733.
    3. Norouzian Baghani, Abbas & Sadjadi, Sodeh & Yaghmaeian, Kamyar & Hossein Mahvi, Amir & Yunesian, Masud & Nabizadeh, Ramin, 2022. "Solid alcohol biofuel based on waste cooking oil: Preparation, properties, micromorphology, heating value optimization and its application as candle wax," Renewable Energy, Elsevier, vol. 192(C), pages 617-630.
    4. da Silva, Paula Maria Melo & Gonçalves, Matheus Arrais & da Luz Corrêa, Ana Paula & da Luz, Patrícia Teresa Souza & Zamian, José Roberto & da Rocha Filho, Geraldo Narciso & da Conceição, Leyvison Rafa, 2023. "Preparation and characterization of a novel efficient catalyst based on molybdenum oxide supported over graphene oxide for biodiesel synthesis," Renewable Energy, Elsevier, vol. 211(C), pages 126-139.
    5. Bora, Akash Pratim & Konda, Lutukurthi D.N.V.V. & Pasupuleti, Srinivas & Durbha, Krishna Sandilya, 2022. "Synthesis of MgO/MgSO4 nanocatalyst by thiourea–nitrate solution combustion for biodiesel production from waste cooking oil," Renewable Energy, Elsevier, vol. 190(C), pages 474-486.
    6. Loh, Jun Mann & Amelia, & Gourich, Wail & Chew, Chien Lye & Song, Cher Pin & Chan, Eng-Seng, 2021. "Improved biodiesel production from sludge palm oil catalyzed by a low-cost liquid lipase under low-input process conditions," Renewable Energy, Elsevier, vol. 177(C), pages 348-358.
    7. Karmakar, Bisheswar & Pal, Sucharita & Gopikrishna, Konga & Tiwari, Onkar Nath & Halder, Gopinath, 2022. "Injection of superheated C1 and C3 alcohols in non-edible Pongamia pinnata oil for semi-continuous uncatalyzed biodiesel synthesis," Renewable Energy, Elsevier, vol. 185(C), pages 850-861.
    8. Aghel, Babak & Gouran, Ashkan & Parandi, Ehsan & Jumeh, Binta Hadi & Nodeh, Hamid Rashidi, 2022. "Production of biodiesel from high acidity waste cooking oil using nano GO@MgO catalyst in a microreactor," Renewable Energy, Elsevier, vol. 200(C), pages 294-302.
    9. Echaroj, Snunkhaem & Santikunaporn, Malee & Phan, Anh N., 2023. "Supercritical ethanol liquefaction of bamboo leaves using functionalized reduced graphene oxides for high quality bio-oil production," Renewable Energy, Elsevier, vol. 204(C), pages 848-857.
    10. Abdelmigeed, Mai O. & Al-Sakkari, Eslam G. & Hefney, Mahmoud S. & Ismail, Fatma M. & Ahmed, Tamer S. & Ismail, Ibrahim M., 2021. "Biodiesel production catalyzed by NaOH/Magnetized ZIF-8: Yield improvement using methanolysis and catalyst reusability enhancement," Renewable Energy, Elsevier, vol. 174(C), pages 253-261.
    11. Aisien, Felix Aibuedefe & Aisien, Eki Tina, 2023. "Modeling and optimization of transesterification of rubber seed oil using sulfonated CaO derived from giant African land snail (Achatina fulica) catalyst by response surface methodology," Renewable Energy, Elsevier, vol. 207(C), pages 137-146.
    12. Li, Ying & Niu, Shengli & Wang, Jun & Zhou, Wenbo & Wang, Yongzheng & Han, Kuihua & Lu, Chunmei, 2022. "Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: Experimental and DFT studies," Renewable Energy, Elsevier, vol. 184(C), pages 164-175.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    2. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    3. Li, Ying & Niu, Shengli & Wang, Jun & Zhou, Wenbo & Wang, Yongzheng & Han, Kuihua & Lu, Chunmei, 2022. "Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: Experimental and DFT studies," Renewable Energy, Elsevier, vol. 184(C), pages 164-175.
    4. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    5. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    6. Liu, Chien-Hung & Huang, Chien-Chang & Wang, Yao-Wen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles," Applied Energy, Elsevier, vol. 100(C), pages 41-46.
    7. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    8. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    9. Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    10. Gao, Xiu & Chen, Chao & Zhang, Wenlu & Hong, Yanping & Wang, Chunrong & Wu, Guoqiang, 2022. "Sulfated TiO2 supported molybdenum-based catalysts for transesterification of Jatropha seed oil: Effect of molybdenum species and acidity properties," Renewable Energy, Elsevier, vol. 191(C), pages 357-369.
    11. Rocha, Pablo D. & Oliveira, Leandro S. & Franca, Adriana S., 2019. "Sulfonated activated carbon from corn cobs as heterogeneous catalysts for biodiesel production using microwave-assisted transesterification," Renewable Energy, Elsevier, vol. 143(C), pages 1710-1716.
    12. Xia, Shaige & Li, Jian & Chen, Guanyi & Tao, Junyu & Li, Wanqing & Zhu, Guangbin, 2022. "Magnetic reusable acid-base bifunctional Co doped Fe2O3–CaO nanocatalysts for biodiesel production from soybean oil and waste frying oil," Renewable Energy, Elsevier, vol. 189(C), pages 421-434.
    13. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    14. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    15. Senthil Kumar, T. & Senthil Kumar, P. & Annamalai, K., 2015. "Experimental study on the performance and emission measures of direct injection diesel engine with Kapok methyl ester and its blends," Renewable Energy, Elsevier, vol. 74(C), pages 903-909.
    16. S. Ozkan & J. F. Puna & J. F. Gomes & T. Cabrita & J. V. Palmeira & M. T. Santos, 2019. "Preliminary Study on the Use of Biodiesel Obtained from Waste Vegetable Oils for Blending with Hydrotreated Kerosene Fossil Fuel Using Calcium Oxide (CaO) from Natural Waste Materials as Heterogeneous," Energies, MDPI, vol. 12(22), pages 1-19, November.
    17. Gómez-Castro, F.I. & Gutiérrez-Antonio, C. & Romero-Izquierdo, A.G. & May-Vázquez, M.M. & Hernández, S., 2023. "Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    18. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    19. Jesús Andrés Tavizón-Pozos & Gerardo Chavez-Esquivel & Víctor Alejandro Suárez-Toriello & Carlos Eduardo Santolalla-Vargas & Oscar Abel Luévano-Rivas & Omar Uriel Valdés-Martínez & Alfonso Talavera-Ló, 2021. "State of Art of Alkaline Earth Metal Oxides Catalysts Used in the Transesterification of Oils for Biodiesel Production," Energies, MDPI, vol. 14(4), pages 1-24, February.
    20. Xia, Shaige & Hu, Yongjie & Chen, Chao & Tao, Junyu & Yan, Beibei & Li, Wanqing & Zhu, Guangbin & Cheng, Zhanjun & Chen, Guanyi, 2022. "Electrolytic transesterification of waste cooking oil using magnetic Co/Fe–Ca based catalyst derived from waste shells: A promising approach towards sustainable biodiesel production," Renewable Energy, Elsevier, vol. 200(C), pages 1286-1299.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2182-2189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.