IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v175y2021icp119-142.html
   My bibliography  Save this article

Energy and exergy assessment of a combined supercritical Brayton cycle-orc hybrid system using solar radiation and coconut shell biomass as energy source

Author

Listed:
  • Meriño Stand, L.
  • Valencia Ochoa, G.
  • Duarte Forero, J.

Abstract

The present investigation presents a novel hybrid solar-biomass system for electric power generation in remote areas. The proposed system integrates a Supercritical Brayton Cycle (SBC) to an Organic Rankine Cycle (ORC) as a bottoming cycle, driven by a Concentrated Solar Tower (CST) system and biomass furnace (coconut shell). The thermal energy generation potential of the biomass was determined from the fiber content, lignin, density, calorific value, and ash content, and the level of pollutant emissions at different combustion rates. Energy and exergy analyses were carried out considering three scenarios: hybrid solar-biomass SBC-ORC, SBC-ORC/solar, and SBC-ORC/biomass. The results revealed that coconut shells feature a low content of inorganic matter with a calorific value of 25.29 MJ/kg, and the best combustion efficiency (CO2/CO) was given at a speed of 0.0895 °C·min−1 (43.16%). The hybrid solar-biomass SBC-ORC system showed an exergetic efficiency of 26.60%, an increase of 17.28% with respect to the SBC-ORC/solar system in its base condition. The turbine inlet temperature was the variable with the greatest influence on the exergetic efficiency of the SBC-ORC/solar system, which reached a maximum of 23.8% at 700 °C. In conclusion, the integration of coconut shell biomass as an alternative and supplementary thermal source is a promising solution for the intermittence of solar-driven systems. This study demonstrated that the novel hybrid system ensures stability, good combustion efficiency, and enhanced performance compare to the standalone solar operation.

Suggested Citation

  • Meriño Stand, L. & Valencia Ochoa, G. & Duarte Forero, J., 2021. "Energy and exergy assessment of a combined supercritical Brayton cycle-orc hybrid system using solar radiation and coconut shell biomass as energy source," Renewable Energy, Elsevier, vol. 175(C), pages 119-142.
  • Handle: RePEc:eee:renene:v:175:y:2021:i:c:p:119-142
    DOI: 10.1016/j.renene.2021.04.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mau, Vivian & Gross, Amit, 2018. "Energy conversion and gas emissions from production and combustion of poultry-litter-derived hydrochar and biochar," Applied Energy, Elsevier, vol. 213(C), pages 510-519.
    2. Pellegrini, Luiz Felipe & de Oliveira, Silvio, 2007. "Exergy analysis of sugarcane bagasse gasification," Energy, Elsevier, vol. 32(4), pages 314-327.
    3. Anvari, Simin & Khalilarya, Sharam & Zare, V., 2018. "Exergoeconomic and environmental analysis of a novel configuration of solar-biomass hybrid power generation system," Energy, Elsevier, vol. 165(PB), pages 776-789.
    4. Jamel, M.S. & Abd Rahman, A. & Shamsuddin, A.H., 2013. "Advances in the integration of solar thermal energy with conventional and non-conventional power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 71-81.
    5. Pantaleo, Antonio M. & Camporeale, Sergio M. & Sorrentino, Arianna & Miliozzi, Adio & Shah, Nilay & Markides, Christos N., 2020. "Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas," Renewable Energy, Elsevier, vol. 147(P3), pages 2913-2931.
    6. Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
    7. Guillermo Valencia Ochoa & Cesar Isaza-Roldan & Jorge Duarte Forero, 2020. "Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential," Energies, MDPI, vol. 13(6), pages 1-22, March.
    8. Mouaky, Ammar & Rachek, Adil, 2020. "Energetic, exergetic and exergeoeconomic assessment of a hybrid solar/biomass poylgeneration system: A case study of a rural community in a semi-arid climate," Renewable Energy, Elsevier, vol. 158(C), pages 280-296.
    9. Sachdeva, Jatin & Singh, Onkar, 2019. "Thermodynamic analysis of solar powered triple combined Brayton, Rankine and organic Rankine cycle for carbon free power," Renewable Energy, Elsevier, vol. 139(C), pages 765-780.
    10. Bojić, Sanja & Đatkov, Đorđe & Brcanov, Dejan & Georgijević, Milosav & Martinov, Milan, 2013. "Location allocation of solid biomass power plants: Case study of Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 769-775.
    11. Nixon, J.D. & Dey, P.K. & Davies, P.A., 2012. "The feasibility of hybrid solar-biomass power plants in India," Energy, Elsevier, vol. 46(1), pages 541-554.
    12. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    13. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    14. Franklin Consuegra & Antonio Bula & Wilson Guillín & Jonathan Sánchez & Jorge Duarte Forero, 2019. "Instantaneous in-Cylinder Volume Considering Deformation and Clearance due to Lubricating Film in Reciprocating Internal Combustion Engines," Energies, MDPI, vol. 12(8), pages 1-21, April.
    15. Padilla, Ricardo Vasquez & Soo Too, Yen Chean & Benito, Regano & Stein, Wes, 2015. "Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers," Applied Energy, Elsevier, vol. 148(C), pages 348-365.
    16. Wang, Xiaohe & Liu, Qibin & Bai, Zhang & Lei, Jing & Jin, Hongguang, 2018. "Thermodynamic investigations of the supercritical CO2 system with solar energy and biomass," Applied Energy, Elsevier, vol. 227(C), pages 108-118.
    17. Morais, Pedro Henrique da Silva & Lodi, Andressa & Aoki, Adriana Cristine & Modesto, Marcelo, 2020. "Energy, exergetic and economic analyses of a combined solar-biomass-ORC cooling cogeneration systems for a Brazilian small plant," Renewable Energy, Elsevier, vol. 157(C), pages 1131-1147.
    18. Guillermo Valencia & Armando Fontalvo & Yulineth Cárdenas & Jorge Duarte & Cesar Isaza, 2019. "Energy and Exergy Analysis of Different Exhaust Waste Heat Recovery Systems for Natural Gas Engine Based on ORC," Energies, MDPI, vol. 12(12), pages 1-22, June.
    19. Abrosimov, Kirill & Baccioli, Andrea & Bischi, Aldo, 2020. "Extensive techno-economic assessment of combined inverted Brayton – Organic Rankine cycle for high-temperature waste heat recovery," Energy, Elsevier, vol. 211(C).
    20. Javanshir, Alireza & Sarunac, Nenad & Razzaghpanah, Zahra, 2018. "Thermodynamic analysis and optimization of single and combined power cycles for concentrated solar power applications," Energy, Elsevier, vol. 157(C), pages 65-75.
    21. Singh, Satyansh & Chakraborty, Jyoti Prasad & Mondal, Monoj Kumar, 2020. "Torrefaction of woody biomass (Acacia nilotica): Investigation of fuel and flow properties to study its suitability as a good quality solid fuel," Renewable Energy, Elsevier, vol. 153(C), pages 711-724.
    22. Rendeiro, Gonçalo & Macedo, Emanuel N. & Pinheiro, Giorgiana & Pinho, João, 2011. "Analysis on the feasibility of biomass power plants adding to the electric power system – Economic, regulatory and market aspects – State of Pará, Brazil," Renewable Energy, Elsevier, vol. 36(6), pages 1678-1684.
    23. Coelho, Bruno & Oliveira, Armando & Schwarzbözl, Peter & Mendes, Adélio, 2015. "Biomass and central receiver system (CRS) hybridization: Integration of syngas/biogas on the atmospheric air volumetric CRS heat recovery steam generator duct burner," Renewable Energy, Elsevier, vol. 75(C), pages 665-674.
    24. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    2. Liu, Zekuan & Wang, Zixuan & Cheng, Kunlin & Wang, Cong & Ha, Chan & Fei, Teng & Qin, Jiang, 2023. "Performance assessment of closed Brayton cycle-organic Rankine cycle lunar base energy system: Thermodynamic analysis, multi-objective optimization," Energy, Elsevier, vol. 278(PA).
    3. Abubaker, Ahmad M. & Darwish Ahmad, Adnan & Salaimeh, Ahmad A. & Akafuah, Nelson K. & Saito, Kozo, 2022. "A novel solar combined cycle integration: An exergy-based optimization using artificial neural network," Renewable Energy, Elsevier, vol. 181(C), pages 914-932.
    4. Ma, Zherui & Dong, Fuxiang & Wang, Jiangjiang & Zhou, Yuan & Feng, Yingsong, 2023. "Optimal design of a novel hybrid renewable energy CCHP system considering long and short-term benefits," Renewable Energy, Elsevier, vol. 206(C), pages 72-85.
    5. Feng, Yong-qiang & Zhang, Fei-yang & Xu, Jing-wei & He, Zhi-xia & Zhang, Qiang & Xu, Kang-jing, 2023. "Parametric analysis and multi-objective optimization of biomass-fired organic Rankine cycle system combined heat and power under three operation strategies," Renewable Energy, Elsevier, vol. 208(C), pages 431-449.
    6. Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Middelhoff, Ella & Madden, Ben & Ximenes, Fabiano & Carney, Catherine & Florin, Nick, 2022. "Assessing electricity generation potential and identifying possible locations for siting hybrid concentrated solar biomass (HCSB) plants in New South Wales (NSW), Australia," Applied Energy, Elsevier, vol. 305(C).
    2. Gutiérrez, R.E. & Haro, P. & Gómez-Barea, A., 2021. "Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system," Applied Energy, Elsevier, vol. 302(C).
    3. Edwin Espinel Blanco & Guillermo Valencia Ochoa & Jorge Duarte Forero, 2020. "Thermodynamic, Exergy and Environmental Impact Assessment of S-CO 2 Brayton Cycle Coupled with ORC as Bottoming Cycle," Energies, MDPI, vol. 13(9), pages 1-24, May.
    4. Chen, Heng & Xue, Kai & Wu, Yunyun & Xu, Gang & Jin, Xin & Liu, Wenyi, 2021. "Thermodynamic and economic analyses of a solar-aided biomass-fired combined heat and power system," Energy, Elsevier, vol. 214(C).
    5. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    6. Son, Seongmin & Jeong, Yongju & Cho, Seong Kuk & Lee, Jeong Ik, 2020. "Development of supercritical CO2 turbomachinery off-design model using 1D mean-line method and Deep Neural Network," Applied Energy, Elsevier, vol. 263(C).
    7. Pantaleo, Antonio M. & Camporeale, Sergio M. & Miliozzi, Adio & Russo, Valeria & Shah, Nilay & Markides, Christos N., 2017. "Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment," Applied Energy, Elsevier, vol. 204(C), pages 994-1006.
    8. Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
    9. Petrollese, Mario & Cocco, Daniele, 2020. "Techno-economic assessment of hybrid CSP-biogas power plants," Renewable Energy, Elsevier, vol. 155(C), pages 420-431.
    10. Padilla, Ricardo Vasquez & Too, Yen Chean Soo & Benito, Regano & McNaughton, Robbie & Stein, Wes, 2016. "Thermodynamic feasibility of alternative supercritical CO2 Brayton cycles integrated with an ejector," Applied Energy, Elsevier, vol. 169(C), pages 49-62.
    11. Osat, Mohammad & Shojaati, Faryar & Osat, Mojtaba, 2023. "A solar-biomass system associated with CO2 capture, power generation and waste heat recovery for syngas production from rice straw and microalgae: Technological, energy, exergy, exergoeconomic and env," Applied Energy, Elsevier, vol. 340(C).
    12. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    13. Merchán, R.P. & Santos, M.J. & Heras, I. & Gonzalez-Ayala, J. & Medina, A. & Hernández, A. Calvo, 2020. "On-design pre-optimization and off-design analysis of hybrid Brayton thermosolar tower power plants for different fluids and plant configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    15. Kunniyoor, Vijayaraj & Singh, Punit & Nadella, Karthik, 2020. "Value of closed-cycle gas turbines with design assessment," Applied Energy, Elsevier, vol. 269(C).
    16. Al-Rashed, Abdullah A.A.A. & Afrand, Masoud, 2021. "Multi-criteria exergoeconomic optimization for a combined gas turbine-supercritical CO2 plant with compressor intake cooling fueled by biogas from anaerobic digestion," Energy, Elsevier, vol. 223(C).
    17. Wang, Kun & Li, Ming-Jia & Guo, Jia-Qi & Li, Peiwen & Liu, Zhan-Bin, 2018. "A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants," Applied Energy, Elsevier, vol. 212(C), pages 109-121.
    18. Wang, Shiqi & Yuan, Zhongyuan & Yu, Nanyang, 2023. "Thermo-economic optimization of organic Rankine cycle with steam-water dual heat source," Energy, Elsevier, vol. 274(C).
    19. Pitot de la Beaujardiere, Jean-Francois P. & Reuter, Hanno C.R., 2018. "A review of performance modelling studies associated with open volumetric receiver CSP plant technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3848-3862.
    20. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:175:y:2021:i:c:p:119-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.