IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics0306261921012526.html
   My bibliography  Save this article

Assessing electricity generation potential and identifying possible locations for siting hybrid concentrated solar biomass (HCSB) plants in New South Wales (NSW), Australia

Author

Listed:
  • Middelhoff, Ella
  • Madden, Ben
  • Ximenes, Fabiano
  • Carney, Catherine
  • Florin, Nick

Abstract

This study aims to assess the deployment potential of hybrid concentrated solar biomass (HCSB) plants for dispatchable renewable electricity generation in New South Wales (NSW), Australia. We present an approach for identifying the most suitable locations for siting new plants. HCSB plants generate steam using a biomass boiler and a concentrated solar power (CSP) system and utilise a shared steam turbine for power generation. The total power generation opportunity was estimated based on available resources. This was achieved by mapping solid biomass (bagasse, stubble and forestry residues) and solar resources (direct normal irradiation) in proximity to zone substations with new grid connection capacity. The total installed capacity of HCSB plants at suitable grid connection locations was calculated to be 874 MWe at a cost of about AU$ 6.3 billion. We also estimated the CO2-e emission abatement potential to be about 6 billion kg of CO2-e per year. The Riverina region was identified to be the most prospective region for HCSB plants in NSW owing to excellent biomass and solar resources and 25 suitable grid connection points. These findings underline NSW’s excellent deployment potential for HCSB plants, a technology that can utilize the vast and currently under-exploited biomass residues and solar resources for dispatchable renewable electricity generation.

Suggested Citation

  • Middelhoff, Ella & Madden, Ben & Ximenes, Fabiano & Carney, Catherine & Florin, Nick, 2022. "Assessing electricity generation potential and identifying possible locations for siting hybrid concentrated solar biomass (HCSB) plants in New South Wales (NSW), Australia," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012526
    DOI: 10.1016/j.apenergy.2021.117942
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921012526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nathan, G.J. & Battye, D.L. & Ashman, P.J., 2014. "Economic evaluation of a novel fuel-saver hybrid combining a solar receiver with a combustor for a solar power tower," Applied Energy, Elsevier, vol. 113(C), pages 1235-1243.
    2. Pantaleo, Antonio M. & Camporeale, Sergio M. & Sorrentino, Arianna & Miliozzi, Adio & Shah, Nilay & Markides, Christos N., 2020. "Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas," Renewable Energy, Elsevier, vol. 147(P3), pages 2913-2931.
    3. Dawson, Lucas & Schlyter, Peter, 2012. "Less is more: Strategic scale site suitability for concentrated solar thermal power in Western Australia," Energy Policy, Elsevier, vol. 47(C), pages 91-101.
    4. Peterseim, Juergen H. & Herr, Alexander & Miller, Sarah & White, Stuart & O'Connell, Deborah A., 2014. "Concentrating solar power/alternative fuel hybrid plants: Annual electricity potential and ideal areas in Australia," Energy, Elsevier, vol. 68(C), pages 698-711.
    5. Parraga, Joel & Khalilpour, Kaveh Rajab & Vassallo, Anthony, 2018. "Polygeneration with biomass-integrated gasification combined cycle process: Review and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 219-234.
    6. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    7. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    8. Nixon, J.D. & Dey, P.K. & Davies, P.A., 2012. "The feasibility of hybrid solar-biomass power plants in India," Energy, Elsevier, vol. 46(1), pages 541-554.
    9. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    10. Peterseim, Juergen H. & White, Stuart & Tadros, Amir & Hellwig, Udo, 2013. "Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?," Renewable Energy, Elsevier, vol. 57(C), pages 520-532.
    11. Peterseim, Juergen H. & White, Stuart & Tadros, Amir & Hellwig, Udo, 2014. "Concentrating solar power hybrid plants – Enabling cost effective synergies," Renewable Energy, Elsevier, vol. 67(C), pages 178-185.
    12. Deason, Wesley, 2018. "Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3168-3178.
    13. Pantaleo, Antonio M. & Camporeale, Sergio M. & Miliozzi, Adio & Russo, Valeria & Shah, Nilay & Markides, Christos N., 2017. "Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment," Applied Energy, Elsevier, vol. 204(C), pages 994-1006.
    14. Ang (Chewie), Tze Chuan & Hayat, Aziz & Li, Bob, 2020. "Short-selling risk in Australia," Pacific-Basin Finance Journal, Elsevier, vol. 63(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Boretti & Stefania Castelletto, 2021. "Techno-economic performances of future concentrating solar power plants in Australia," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-10, December.
    2. Huang, Chang & Madonski, Rafal & Zhang, Qi & Yan, Yixian & Zhang, Nan & Yang, Yongping, 2022. "On the use of thermal energy storage in solar-aided power generation systems," Applied Energy, Elsevier, vol. 310(C).
    3. Carla Cristiane Sokulski & Murillo Vetroni Barros & Rodrigo Salvador & Evandro Eduardo Broday & Antonio Carlos de Francisco, 2022. "Trends in Renewable Electricity Generation in the G20 Countries: An Analysis of the 1990–2020 Period," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    4. Sun, Liangliang & Peng, Jiayu & Dinçer, Hasan & Yüksel, Serhat, 2022. "Coalition-oriented strategic selection of renewable energy system alternatives using q-ROF DEMATEL with golden cut," Energy, Elsevier, vol. 256(C).
    5. Raghunathan Krishankumar & Arunodaya Raj Mishra & Pratibha Rani & Fausto Cavallaro & Kattur Soundarapandian Ravichandran, 2023. "A Novel Integrated q-Rung Fuzzy Framework for Biomass Location Selection with No Apriori Weight Choices," Sustainability, MDPI, vol. 15(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gutiérrez, R.E. & Haro, P. & Gómez-Barea, A., 2021. "Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system," Applied Energy, Elsevier, vol. 302(C).
    2. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).
    3. Pantaleo, Antonio M. & Camporeale, Sergio M. & Sorrentino, Arianna & Miliozzi, Adio & Shah, Nilay & Markides, Christos N., 2020. "Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas," Renewable Energy, Elsevier, vol. 147(P3), pages 2913-2931.
    4. Petrollese, Mario & Cocco, Daniele, 2020. "Techno-economic assessment of hybrid CSP-biogas power plants," Renewable Energy, Elsevier, vol. 155(C), pages 420-431.
    5. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    6. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    7. Pantaleo, Antonio M. & Camporeale, Sergio M. & Miliozzi, Adio & Russo, Valeria & Shah, Nilay & Markides, Christos N., 2017. "Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment," Applied Energy, Elsevier, vol. 204(C), pages 994-1006.
    8. Meriño Stand, L. & Valencia Ochoa, G. & Duarte Forero, J., 2021. "Energy and exergy assessment of a combined supercritical Brayton cycle-orc hybrid system using solar radiation and coconut shell biomass as energy source," Renewable Energy, Elsevier, vol. 175(C), pages 119-142.
    9. Georgios E. Arnaoutakis & Georgia Kefala & Eirini Dakanali & Dimitris Al. Katsaprakakis, 2022. "Combined Operation of Wind-Pumped Hydro Storage Plant with a Concentrating Solar Power Plant for Insular Systems: A Case Study for the Island of Rhodes," Energies, MDPI, vol. 15(18), pages 1-23, September.
    10. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    11. Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    13. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    14. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    15. Siqueira, Mario B. & Monteiro Filho, Arthur, 2021. "Hybrid concentrating solar-landfill gas power-generation concept for landfill energy recovery," Applied Energy, Elsevier, vol. 298(C).
    16. Lim, Jin Han & Nathan, Graham J. & Hu, Eric & Dally, Bassam B., 2016. "Analytical assessment of a novel hybrid solar tubular receiver and combustor," Applied Energy, Elsevier, vol. 162(C), pages 298-307.
    17. Sánchez, David & Bortkiewicz, Anna & Rodríguez, José M. & Martínez, Gonzalo S. & Gavagnin, Giacomo & Sánchez, Tomás, 2016. "A methodology to identify potential markets for small-scale solar thermal power generators," Applied Energy, Elsevier, vol. 169(C), pages 287-300.
    18. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    19. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    20. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.