IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v75y2015icp665-674.html
   My bibliography  Save this article

Biomass and central receiver system (CRS) hybridization: Integration of syngas/biogas on the atmospheric air volumetric CRS heat recovery steam generator duct burner

Author

Listed:
  • Coelho, Bruno
  • Oliveira, Armando
  • Schwarzbözl, Peter
  • Mendes, Adélio

Abstract

Central receiver systems (CRS) are a promising concentrated solar power (CSP) technology for dispatchable electricity generation. The CRS levelized cost of electricity (LCOE) is usually increased by low power-block capacity factors or by high thermal storage costs. The economical turnover is still positive for the Portuguese case but depends on the bonus feed-in tariffs. On the other hand, with biomass existing feed-in tariffs and raising prices, the viability of current biomass power plants is at risk. To address these issues, several base case power plants and hybrid biomass/CSP options are analyzed: wood gasification, refuse-derived fuel pellets, biogas from a wastewater anaerobic digester, biogas from a landfill and natural gas.

Suggested Citation

  • Coelho, Bruno & Oliveira, Armando & Schwarzbözl, Peter & Mendes, Adélio, 2015. "Biomass and central receiver system (CRS) hybridization: Integration of syngas/biogas on the atmospheric air volumetric CRS heat recovery steam generator duct burner," Renewable Energy, Elsevier, vol. 75(C), pages 665-674.
  • Handle: RePEc:eee:renene:v:75:y:2015:i:c:p:665-674
    DOI: 10.1016/j.renene.2014.10.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114006818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.10.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    2. Coelho, Bruno & Varga, Szabolcs & Oliveira, Armando & Mendes, Adélio, 2014. "Optimization of an atmospheric air volumetric central receiver system: Impact of solar multiple, storage capacity and control strategy," Renewable Energy, Elsevier, vol. 63(C), pages 392-401.
    3. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pitot de la Beaujardiere, Jean-Francois P. & Reuter, Hanno C.R., 2018. "A review of performance modelling studies associated with open volumetric receiver CSP plant technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3848-3862.
    2. Adnan, Muhammad & Zaman, Muhammad & Ullah, Atta & Gungor, Afsin & Rizwan, Muhammad & Raza Naqvi, Salman, 2022. "Thermo-economic analysis of integrated gasification combined cycle co-generation system hybridized with concentrated solar power tower," Renewable Energy, Elsevier, vol. 198(C), pages 654-666.
    3. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    4. Pantaleo, Antonio M. & Camporeale, Sergio M. & Sorrentino, Arianna & Miliozzi, Adio & Shah, Nilay & Markides, Christos N., 2020. "Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas," Renewable Energy, Elsevier, vol. 147(P3), pages 2913-2931.
    5. Cavallaro, Fausto & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Mardani, Abbas, 2019. "Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy topsis and trigonometric entropy weights," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 258-270.
    6. Zhang, Quanguo & Hu, Jianjun & Lee, Duu-Jong, 2016. "Biogas from anaerobic digestion processes: Research updates," Renewable Energy, Elsevier, vol. 98(C), pages 108-119.
    7. Mattia Iotti & Giuseppe Bonazzi, 2016. "Assessment of Biogas Plant Firms by Application of Annual Accounts and Financial Data Analysis Approach," Energies, MDPI, vol. 9(9), pages 1-19, September.
    8. Meriño Stand, L. & Valencia Ochoa, G. & Duarte Forero, J., 2021. "Energy and exergy assessment of a combined supercritical Brayton cycle-orc hybrid system using solar radiation and coconut shell biomass as energy source," Renewable Energy, Elsevier, vol. 175(C), pages 119-142.
    9. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    10. Valentyna Stanytsina & Volodymyr Artemchuk & Olga Bogoslavska & Artur Zaporozhets & Antonina Kalinichenko & Jan Stebila & Valerii Havrysh & Dariusz Suszanowicz, 2022. "Fossil Fuel and Biofuel Boilers in Ukraine: Trends of Changes in Levelized Cost of Heat," Energies, MDPI, vol. 15(19), pages 1-18, September.
    11. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    2. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
    4. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
    5. Kesler, Selami & Kivrak, Sinan & Dincer, Furkan & Rustemli, Sabir & Karaaslan, Muharrem & Unal, Emin & Erdiven, Utku, 2014. "The analysis of PV power potential and system installation in Manavgat, Turkey—A case study in winter season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 671-680.
    6. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    7. Sun, Honghang & Gong, Bo & Yao, Qiang, 2014. "A review of wind loads on heliostats and trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 206-221.
    8. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland, 2018. "Experimental performance of a two-stage (50X) parabolic trough collector tested to 650 °C using a suspended particulate (alumina) HTF," Applied Energy, Elsevier, vol. 222(C), pages 228-243.
    9. Balghouthi, Moncef & Trabelsi, Seif Eddine & Amara, Mahmoud Ben & Ali, Abdessalem Bel Hadj & Guizani, Amenallah, 2016. "Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1227-1248.
    10. Colmenar-Santos, Antonio & Borge-Diez, David & Molina, Clara Pérez & Castro-Gil, Manuel, 2014. "Water consumption in solar parabolic trough plants: review and analysis of the southern Spain case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 565-577.
    11. Lim, Jin Han & Dally, Bassam B. & Chinnici, Alfonso & Nathan, Graham J., 2017. "Techno-economic evaluation of modular hybrid concentrating solar power systems," Energy, Elsevier, vol. 129(C), pages 158-170.
    12. Dunham, Marc T. & Iverson, Brian D., 2014. "High-efficiency thermodynamic power cycles for concentrated solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 758-770.
    13. Wang, Qiliang & Li, Jing & Yang, Honglun & Su, Katy & Hu, Mingke & Pei, Gang, 2017. "Performance analysis on a high-temperature solar evacuated receiver with an inner radiation shield," Energy, Elsevier, vol. 139(C), pages 447-458.
    14. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland & Cygan, David & Abbasi, Hamid, 2019. "Experimental performance of a two-stage (50×) parabolic trough collector tested to 650 °C using a suspended particulate heat transfer fluid," Applied Energy, Elsevier, vol. 240(C), pages 436-445.
    15. Jiang, Kaijun & Du, Xiaoze & Zhang, Qiang & Kong, Yanqiang & Xu, Chao & Ju, Xing, 2021. "Review on gas-solid fluidized bed particle solar receivers applied in concentrated solar applications: Materials, configurations and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    18. Pitot de la Beaujardiere, Jean-Francois P. & Reuter, Hanno C.R., 2018. "A review of performance modelling studies associated with open volumetric receiver CSP plant technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3848-3862.
    19. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    20. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:75:y:2015:i:c:p:665-674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.