IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp685-699.html
   My bibliography  Save this article

Evaluation of hydro-wind complementarity in the medium-term planning of electrical power systems by joint simulation of periodic streamflow and wind speed time series: A Brazilian case study

Author

Listed:
  • Ávila, Leandro
  • Mine, Miriam R.M
  • Kaviski, Eloy
  • Detzel, Daniel H.M.

Abstract

Wind variability and hydro-wind complementarity should be both considered in the planning of electrical power systems. In such cases, the spatio-temporal dependence between streamflow and wind speed regimes needs to be asses to balance the electricity generation. Medium-term hydrothermal scheduling problems (MTHS) are used to define operation policies for electrical power systems under 5–10 years horizon. MTHS uses stochastic optimization techniques fed by synthetic streamflow scenarios. To set better operation policies, such scenarios should well represent statistical features of historical data. With the rapid growth in the installed capacity of wind power, operators are encouraged to consider novel approaches to represent the dependence of hydrometeorological variables. This study integrates wind variability and hydro-wind complementarity in the medium-term planning of electrical power systems employing joint simulation of periodic streamflow and wind speed time series. The generated scenarios are used as input to derive monthly operational policies via Implicit Stochastic Optimization. A hydropower plant and a wind farm, both located in the Northeast region of Brazil were selected as a case study. Results show that considering wind variability and hydro-wind complementarity can significantly reduce energy deficits in power systems and increase the flexibility in the operation of water reservoirs.

Suggested Citation

  • Ávila, Leandro & Mine, Miriam R.M & Kaviski, Eloy & Detzel, Daniel H.M., 2021. "Evaluation of hydro-wind complementarity in the medium-term planning of electrical power systems by joint simulation of periodic streamflow and wind speed time series: A Brazilian case study," Renewable Energy, Elsevier, vol. 167(C), pages 685-699.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:685-699
    DOI: 10.1016/j.renene.2020.11.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bueno, C. & Carta, J.A., 2006. "Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 312-340, August.
    2. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    3. Pinheiro Neto, Daywes & Domingues, Elder Geraldo & Coimbra, António Paulo & de Almeida, Aníbal Traça & Alves, Aylton José & Calixto, Wesley Pacheco, 2017. "Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil," Energy Economics, Elsevier, vol. 64(C), pages 238-250.
    4. Tobias Michael Erhardt & Claudia Czado & Ulf Schepsmeier, 2015. "R-vine models for spatial time series with an application to daily mean temperature," Biometrics, The International Biometric Society, vol. 71(2), pages 323-332, June.
    5. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    6. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    7. Schmidt, Johannes & Cancella, Rafael & Junior, Amaro Olímpio Pereira, 2016. "The effect of windpower on long-term variability of combined hydro-wind resources: The case of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 131-141.
    8. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    9. Kaplan, Yusuf Alper, 2015. "Overview of wind energy in the world and assessment of current wind energy policies in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 562-568.
    10. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    11. Ferreira, Pedro Guilherme Costa & Oliveira, Fernando Luiz Cyrino & Souza, Reinaldo Castro, 2015. "The stochastic effects on the Brazilian Electrical Sector," Energy Economics, Elsevier, vol. 49(C), pages 328-335.
    12. Fearnside, Philip M., 2016. "Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia: Implications for the Aluminum Industry," World Development, Elsevier, vol. 77(C), pages 48-65.
    13. Aquila, Giancarlo & Pamplona, Edson de Oliveira & Queiroz, Anderson Rodrigo de & Rotela Junior, Paulo & Fonseca, Marcelo Nunes, 2017. "An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1090-1098.
    14. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    15. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    16. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2016. "Optimization modeling to support renewables integration in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 316-325.
    17. Gebretsadik, Yohannes & Fant, Charles & Strzepek, Kenneth & Arndt, Channing, 2016. "Optimized reservoir operation model of regional wind and hydro power integration case study: Zambezi basin and South Africa," Applied Energy, Elsevier, vol. 161(C), pages 574-582.
    18. Garcia Latorre, Francisco Javier & Quintana, Jose Juan & de la Nuez, Ignacio, 2019. "Technical and economic evaluation of the integration of a wind-hydro system in El Hierro island," Renewable Energy, Elsevier, vol. 134(C), pages 186-193.
    19. Botelho, Anabela & Ferreira, Paula & Lima, Fátima & Pinto, Lígia M. Costa & Sousa, Sara, 2017. "Assessment of the environmental impacts associated with hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 896-904.
    20. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    21. Alcigeimes Celeste & Max Billib, 2012. "Improving Implicit Stochastic Reservoir Optimization Models with Long-Term Mean Inflow Forecast," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2443-2451, July.
    22. da Graça Carvalho, Maria, 2012. "EU energy and climate change strategy," Energy, Elsevier, vol. 40(1), pages 19-22.
    23. Fisher N. I. & Switzer P., 2001. "Graphical Assessment of Dependence: Is a Picture Worth 100 Tests?," The American Statistician, American Statistical Association, vol. 55, pages 233-239, August.
    24. Cantão, Mauricio P. & Bessa, Marcelo R. & Bettega, Renê & Detzel, Daniel H.M. & Lima, João M., 2017. "Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps," Renewable Energy, Elsevier, vol. 101(C), pages 1215-1225.
    25. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    26. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    27. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    28. Chade Ricosti, Juliana F. & Sauer, Ildo L., 2013. "An assessment of wind power prospects in the Brazilian hydrothermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 742-753.
    29. Suomalainen, Kiti & Pritchard, Geoffrey & Sharp, Basil & Yuan, Ziqi & Zakeri, Golbon, 2015. "Correlation analysis on wind and hydro resources with electricity demand and prices in New Zealand," Applied Energy, Elsevier, vol. 137(C), pages 445-462.
    30. Silva, Allan Rodrigues & Pimenta, Felipe Mendonça & Assireu, Arcilan Trevenzoli & Spyrides, Maria Helena Constantino, 2016. "Complementarity of Brazil׳s hydro and offshore wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 413-427.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    2. Mirian Bortoluzzi & Marcelo Furlan & Simone Geitenes Colombo & Tatiele Martins Amaral & Celso Correia de Souza & José Francisco dos Reis Neto & Josimar Fernandes de França, 2021. "Combining Value-Focused Thinking and PROMETHEE Techniques for Selecting a Portfolio of Distributed Energy Generation Projects in the Brazilian Electricity Sector," Sustainability, MDPI, vol. 13(19), pages 1-19, October.
    3. Gonzalez-Salazar, Miguel & Poganietz, Witold Roger, 2021. "Evaluating the complementarity of solar, wind and hydropower to mitigate the impact of El Niño Southern Oscillation in Latin America," Renewable Energy, Elsevier, vol. 174(C), pages 453-467.
    4. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Li, Gang & Liu, Lingjun, 2022. "Impacts of different wind and solar power penetrations on cascade hydroplants operation," Renewable Energy, Elsevier, vol. 182(C), pages 227-244.
    5. Zapata, Sebastian & Castaneda, Monica & Herrera, Milton M. & Dyner, Isaac, 2023. "Investigating the concurrence of transmission grid expansion and the dissemination of renewables," Energy, Elsevier, vol. 276(C).
    6. Gong, Yu & Liu, Pan & Ming, Bo & Feng, Maoyuan & Huang, Kangdi & Wang, Yibo, 2022. "Identifying the functional form of operating rules for hydro–photovoltaic hybrid power systems," Energy, Elsevier, vol. 243(C).
    7. Zhang, Yusheng & Zhao, Xuehua & Wang, Xin & Li, Aiyun & Wu, Xinhao, 2023. "Multi-objective optimization design of a grid-connected hybrid hydro-photovoltaic system considering power transmission capacity," Energy, Elsevier, vol. 284(C).
    8. Bortoluzzi, Mirian & Furlan, Marcelo & dos Reis Neto, José Francisco, 2022. "Assessing the impact of hydropower projects in Brazil through data envelopment analysis and machine learning," Renewable Energy, Elsevier, vol. 200(C), pages 1316-1326.
    9. Li, Yan & Ming, Bo & Huang, Qiang & Wang, Yimin & Liu, Pan & Guo, Pengcheng, 2022. "Identifying effective operating rules for large hydro–solar–wind hybrid systems based on an implicit stochastic optimization framework," Energy, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sterl, Sebastian & Donk, Peter & Willems, Patrick & Thiery, Wim, 2020. "Turbines of the Caribbean: Decarbonising Suriname's electricity mix through hydro-supported integration of wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Wang, Zhenni & Wen, Xin & Tan, Qiaofeng & Fang, Guohua & Lei, Xiaohui & Wang, Hao & Yan, Jinyue, 2021. "Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Wen, Xin & Sun, Yuanliang & Tan, Qiaofeng & Tang, Zhengyang & Wang, Zhenni & Liu, Zhehua & Ding, Ziyu, 2022. "Optimizing the sizes of wind and photovoltaic plants complementarily operating with cascade hydropower stations: Balancing risk and benefit," Applied Energy, Elsevier, vol. 306(PA).
    4. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2020. "Benefits from energy policy synchronisation of Brazil’s North-Northeast interconnection," Renewable Energy, Elsevier, vol. 162(C), pages 427-437.
    5. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    6. Zhang, Hongxuan & Lu, Zongxiang & Hu, Wei & Wang, Yiting & Dong, Ling & Zhang, Jietan, 2019. "Coordinated optimal operation of hydro–wind–solar integrated systems," Applied Energy, Elsevier, vol. 242(C), pages 883-896.
    7. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    8. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Sonja Simon & Tobias Naegler & Hans Christian Gils, 2018. "Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America," Energies, MDPI, vol. 11(4), pages 1-26, April.
    10. Jack, M.W. & Mirfin, A. & Anderson, B., 2021. "The role of highly energy-efficient dwellings in enabling 100% renewable electricity," Energy Policy, Elsevier, vol. 158(C).
    11. Ávila R., Leandro & Mine, Miriam R.M. & Kaviski, Eloy & Detzel, Daniel H.M. & Fill, Heinz D. & Bessa, Marcelo R. & Pereira, Guilherme A.A., 2020. "Complementarity modeling of monthly streamflow and wind speed regimes based on a copula-entropy approach: A Brazilian case study," Applied Energy, Elsevier, vol. 259(C).
    12. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    13. Kim, Yeong Jae & Wilson, Charlie, 2019. "Analysing energy innovation portfolios from a systemic perspective," Energy Policy, Elsevier, vol. 134(C).
    14. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    15. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    16. Hilario J. Torres-Herrera & Alexis Lozano-Medina, 2021. "Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island," Energies, MDPI, vol. 14(12), pages 1-27, June.
    17. Nilton Bispo Amado & Erick Del Bianco Pelegia & Ildo Luís Sauer, 2021. "Capacity Value from Wind and Solar Sources in Systems with Variable Dispatchable Capacity—An Application in the Brazilian Hydrothermal System," Energies, MDPI, vol. 14(11), pages 1-26, May.
    18. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    19. Katarzyna Chudy-Laskowska & Tomasz Pisula & Mirosław Liana & László Vasa, 2020. "Taxonomic Analysis of the Diversity in the Level of Wind Energy Development in European Union Countries," Energies, MDPI, vol. 13(17), pages 1-21, August.
    20. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:685-699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.