IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp689-695.html
   My bibliography  Save this article

SEM-REV offshore energy site wind-wave bivariate statistics by hindcast

Author

Listed:
  • Gaidai, Oleg
  • Xu, Xiaosen
  • Wang, Junlei
  • Ye, Renchuan
  • Cheng, Yong
  • Karpa, Oleh

Abstract

Accurate estimation of extreme wind and wave conditions is critical for ocean engineering activities and applications. Various renewable energy offshore structures, particularly floating wind turbines are designed to sustain extreme wind and wave induced loads. Statistics of wind speeds and wave heights is the key input for structural safety and reliability study. Consequently, development of novel robust methods, able to predict extreme wind-wave conditions is essential.

Suggested Citation

  • Gaidai, Oleg & Xu, Xiaosen & Wang, Junlei & Ye, Renchuan & Cheng, Yong & Karpa, Oleh, 2020. "SEM-REV offshore energy site wind-wave bivariate statistics by hindcast," Renewable Energy, Elsevier, vol. 156(C), pages 689-695.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:689-695
    DOI: 10.1016/j.renene.2020.04.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120306455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Dong Hyawn & Lee, Sang Geun, 2015. "Reliability analysis of offshore wind turbine support structures under extreme ocean environmental loads," Renewable Energy, Elsevier, vol. 79(C), pages 161-166.
    2. Larsén, Xiaoli Guo & Kalogeri, Christina & Galanis, George & Kallos, George, 2015. "A statistical methodology for the estimation of extreme wave conditions for offshore renewable applications," Renewable Energy, Elsevier, vol. 80(C), pages 205-218.
    3. N. Teena & V. Sanil Kumar & K. Sudheesh & R. Sajeev, 2012. "Statistical analysis on extreme wave height," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 223-236, October.
    4. Stuart G. Coles & Jonathan A. Tawn, 1994. "Statistical Methods for Multivariate Extremes: An Application to Structural Design," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 1-31, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning, De-zhi & Mu, Di & Wang, Rong-quan & Mayon, Robert, 2023. "Experimental and numerical investigations on the solitary wave actions on a land-fixed OWC wave energy converter," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaidai, Oleg & Ji, Chunyan & Kalogeri, Christina & Gao, Junliang, 2017. "SEM-REV energy site extreme wave prediction," Renewable Energy, Elsevier, vol. 101(C), pages 894-899.
    2. Seo, Junwon & Pokhrel, Jharna & Hu, Jong Wan, 2022. "Multi-Hazard Fragility Analysis of Offshore Wind Turbine Portfolios using Surrogate Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 1-12, June.
    4. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    5. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    6. Song, Yupeng & Basu, Biswajit & Zhang, Zili & Sørensen, John Dalsgaard & Li, Jie & Chen, Jianbing, 2021. "Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method," Renewable Energy, Elsevier, vol. 168(C), pages 991-1014.
    7. Draycott, S. & Sellar, B. & Davey, T. & Noble, D.R. & Venugopal, V. & Ingram, D.M., 2019. "Capture and simulation of the ocean environment for offshore renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 15-29.
    8. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    9. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    10. de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
    11. Thanh-Tuan Tran & Sangkyun Kang & Jang-Ho Lee & Daeyong Lee, 2021. "Directional Bending Performance of 4-Leg Jacket Substructure Supporting a 3MW Offshore Wind Turbine," Energies, MDPI, vol. 14(9), pages 1-17, May.
    12. Richards, Jordan & Tawn, Jonathan A., 2022. "On the tail behaviour of aggregated random variables," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    13. Simpson, Emma S. & Wadsworth, Jennifer L. & Tawn, Jonathan A., 2021. "A geometric investigation into the tail dependence of vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    14. Gómez-Orellana, A.M. & Guijo-Rubio, D. & Gutiérrez, P.A. & Hervás-Martínez, C., 2022. "Simultaneous short-term significant wave height and energy flux prediction using zonal multi-task evolutionary artificial neural networks," Renewable Energy, Elsevier, vol. 184(C), pages 975-989.
    15. Brendan Bradley & Murad Taqqu, 2004. "Asset allocation when guarding against catastrophic losses: a comparison between the structure variable and joint probability methods," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 619-636.
    16. T. Muhammed Naseef & V. Sanil Kumar & Jossia Joseph & B. K. Jena, 2019. "Uncertainties of the 50-year wave height estimation using generalized extreme value and generalized Pareto distributions in the Indian Shelf seas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1231-1251, July.
    17. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    18. Raphaël de Fondeville & Anthony C. Davison, 2022. "Functional peaks‐over‐threshold analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1392-1422, September.
    19. Denault, Michel & Dupuis, Debbie & Couture-Cardinal, Sébastien, 2009. "Complementarity of hydro and wind power: Improving the risk profile of energy inflows," Energy Policy, Elsevier, vol. 37(12), pages 5376-5384, December.
    20. Cornejo-Bueno, L. & Nieto-Borge, J.C. & García-Díaz, P. & Rodríguez, G. & Salcedo-Sanz, S., 2016. "Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm – Extreme Learning Machine approach," Renewable Energy, Elsevier, vol. 97(C), pages 380-389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:689-695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.