IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123014854.html
   My bibliography  Save this article

Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions

Author

Listed:
  • Kresning, Boma
  • Hashemi, M. Reza
  • Shirvani, Amin
  • Hashemi, Javad

Abstract

The offshore wind industry is rapidly developing in a hurricane prone area off the US East Coast. For assessment of extreme environmental conditions, or hazard intensity measures, such as wind and wave loads (e.g., 50-year or 500-year wind speed) various methodologies including univariate (e.g., Generalized Extreme Value distribution; GEV) and multivariate (e.g., Inverse First Order Reliability Method, IFORM) analysis have been recommended. Further, due to lack of long-term observed data at a site, available observed/hindcast at nearby stations are commonly used which can lead to errors. The objective of this study is to better understand and quantify the level of uncertainty in extreme value analysis of wind/wave data for marine renewable energy sites in hurricane-prone regions. An area off the northeast of the US where several large projects have been planned was selected as a case study. Univariate and bivariate analyses of wind/wave data at several stations were carried out and results were compared.

Suggested Citation

  • Kresning, Boma & Hashemi, M. Reza & Shirvani, Amin & Hashemi, Javad, 2024. "Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014854
    DOI: 10.1016/j.renene.2023.119570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin D. Youngman, 2019. "Generalized Additive Models for Exceedances of High Thresholds With an Application to Return Level Estimation for U.S. Wind Gusts," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1865-1879, October.
    2. Han, Qinkai & Ma, Sai & Wang, Tianyang & Chu, Fulei, 2019. "Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Bi, Cheng & Law, Adrian Wing-Keung, 2023. "Co-locating offshore wind and floating solar farms – Effect of high wind and wave conditions on solar power performance," Energy, Elsevier, vol. 266(C).
    4. Toft, Henrik Stensgaard & Svenningsen, Lasse & Sørensen, John Dalsgaard & Moser, Wolfgang & Thøgersen, Morten Lybech, 2016. "Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads," Renewable Energy, Elsevier, vol. 90(C), pages 352-361.
    5. Chi-Hsiang Wang & John D. Holmes, 2020. "Exceedance rate, exceedance probability, and the duality of GEV and GPD for extreme hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1305-1321, July.
    6. Larsén, Xiaoli Guo & Kalogeri, Christina & Galanis, George & Kallos, George, 2015. "A statistical methodology for the estimation of extreme wave conditions for offshore renewable applications," Renewable Energy, Elsevier, vol. 80(C), pages 205-218.
    7. P. Jonathan & K. Ewans & D. Randell, 2014. "Non‐stationary conditional extremes of northern North Sea storm characteristics," Environmetrics, John Wiley & Sons, Ltd., vol. 25(3), pages 172-188, May.
    8. Takvor Soukissian & Christos Tsalis, 2015. "The effect of the generalized extreme value distribution parameter estimation methods in extreme wind speed prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1777-1809, September.
    9. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    10. Stephen Rose & Paulina Jaramillo & Mitchell J. Small & Jay Apt, 2013. "Quantifying the Hurricane Catastrophe Risk to Offshore Wind Power," Risk Analysis, John Wiley & Sons, vol. 33(12), pages 2126-2141, December.
    11. Hallowell, Spencer T. & Myers, Andrew T. & Arwade, Sanjay R. & Pang, Weichiang & Rawal, Prashant & Hines, Eric M. & Hajjar, Jerome F. & Qiao, Chi & Valamanesh, Vahid & Wei, Kai & Carswell, Wystan & Fo, 2018. "Hurricane risk assessment of offshore wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 234-249.
    12. Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
    13. Kang, Dongbum & Ko, Kyungnam & Huh, Jongchul, 2015. "Determination of extreme wind values using the Gumbel distribution," Energy, Elsevier, vol. 86(C), pages 51-58.
    14. Wang, Jianzhou & Qin, Shanshan & Jin, Shiqiang & Wu, Jie, 2015. "Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 26-42.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashemi, M.Reza & Kresning, Boma & Hashemi, Javad & Ginis, Isaac, 2021. "Assessment of hurricane generated loads on offshore wind farms; a closer look at most extreme historical hurricanes in New England," Renewable Energy, Elsevier, vol. 175(C), pages 593-609.
    2. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    3. Jordan Richards & Jennifer L. Wadsworth, 2021. "Spatial deformation for nonstationary extremal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    4. Christopher Jung & Dirk Schindler & Alexander Buchholz & Jessica Laible, 2017. "Global Gust Climate Evaluation and Its Influence on Wind Turbines," Energies, MDPI, vol. 10(10), pages 1-18, September.
    5. Saravanan Bhaskaran & Amrit Shankar Verma & Andrew J. Goupee & Subhamoy Bhattacharya & Amir R. Nejad & Wei Shi, 2023. "Comparison of Extreme Wind and Waves Using Different Statistical Methods in 40 Offshore Wind Energy Lease Areas Worldwide," Energies, MDPI, vol. 16(19), pages 1-26, October.
    6. Elio Chiodo & Bassel Diban & Giovanni Mazzanti & Fabio De Angelis, 2023. "A Review on Wind Speed Extreme Values Modeling and Bayes Estimation for Wind Power Plant Design and Construction," Energies, MDPI, vol. 16(14), pages 1-20, July.
    7. Zheng, Chong Wei & Li, Chong Yin & Pan, Jing & Liu, Ming Yang & Xia, Lin Lin, 2016. "An overview of global ocean wind energy resource evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1240-1251.
    8. Rebecca J. Barthelmie & Kaitlyn E. Dantuono & Emma J. Renner & Frederick L. Letson & Sara C. Pryor, 2021. "Extreme Wind and Waves in U.S. East Coast Offshore Wind Energy Lease Areas," Energies, MDPI, vol. 14(4), pages 1-25, February.
    9. Yuyang Gao & Chao Qu & Kequan Zhang, 2016. "A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 9(10), pages 1-28, September.
    10. Liang Lu & Minyan Zhu & Haijun Wu & Jianzhong Wu, 2022. "A Review and Case Analysis on Biaxial Synchronous Loading Technology and Fast Moment-Matching Methods for Fatigue Tests of Wind Turbine Blades," Energies, MDPI, vol. 15(13), pages 1-34, July.
    11. Refk Selmi & Christos Kollias & Stephanos Papadamou & Rangan Gupta, 2017. "A Copula-Based Quantile-on-Quantile Regression Approach to Modeling Dependence Structure between Stock and Bond Returns: Evidence from Historical Data of India, South Africa, UK and US," Working Papers 201747, University of Pretoria, Department of Economics.
    12. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    13. Anne‐Laure Fougères & John P. Nolan & Holger Rootzén, 2009. "Models for Dependent Extremes Using Stable Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 42-59, March.
    14. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    16. Lee Fawcett & David Walshaw, 2014. "Estimating the probability of simultaneous rainfall extremes within a region: a spatial approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 959-976, May.
    17. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    18. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    19. Barme-Delcroix, Marie-Francoise & Gather, Ursula, 2007. "Limit laws for multidimensional extremes," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1750-1755, December.
    20. Soukissian, Takvor H. & Papadopoulos, Anastasios, 2015. "Effects of different wind data sources in offshore wind power assessment," Renewable Energy, Elsevier, vol. 77(C), pages 101-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.