IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp358-368.html
   My bibliography  Save this article

A study of dynamic response of a wind turbine blade based on the multi-body dynamics method

Author

Listed:
  • Xu, Jin
  • Zhang, Lei
  • Li, Xue
  • Li, Shuang
  • Yang, Ke

Abstract

The geometric nonlinear problem caused by large deformation and the aeroelastic issue under extreme wind conditions are becoming more and more prominent, as the flexibility of wind turbine blades enhances. To solve this problem, a model of Blade analysis with Multi-Body (BaMB) method is built by the rigid multi-body dynamics method in absolute coordinates. The model describes geometric nonlinearity and complex geometry of blades, and accurate results can be obtained by the model after blades are reasonably divided. Based on this model, the geometric nonlinearity of a 100 kW blade under static loading and the aeroelastic response under extreme operating gust (EOG) condition are investigated numerically and compared with experimental results. The results show that BaMB model is able to predict more accurate deformation than beam models under static loading when the deformation of the blade increases, especially when the blade is loaded with more than 120% of the maximum design load and the tip deflection is larger than 15.36% of the blade spans. At 210% of the maximum design load, the BaMB model can predict the deformation at the accuracy of 1.48% with respect to the test; however, the accuracies of the Euler-Bernoulli beam and the Timoshenko beam are 18.3% and 16.79%, respectively. Even in the case of large deformation, the BaMB model can reach the accuracy close to the finite element method (FEM) with high computational efficiency. The aeroelastic response of the blade under EOG condition is analyzed, and the results show that the BaMB model predicts reliable aeroelastic characteristics of the blade compared with commercial software.

Suggested Citation

  • Xu, Jin & Zhang, Lei & Li, Xue & Li, Shuang & Yang, Ke, 2020. "A study of dynamic response of a wind turbine blade based on the multi-body dynamics method," Renewable Energy, Elsevier, vol. 155(C), pages 358-368.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:358-368
    DOI: 10.1016/j.renene.2020.03.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120304353
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gebhardt, C.G. & Roccia, B.A., 2014. "Non-linear aeroelasticity: An approach to compute the response of three-blade large-scale horizontal-axis wind turbines," Renewable Energy, Elsevier, vol. 66(C), pages 495-514.
    2. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    3. Joselin Herbert, G.M. & Iniyan, S. & Sreevalsan, E. & Rajapandian, S., 2007. "A review of wind energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1117-1145, August.
    4. Kim, Taeseong & Hansen, Anders M. & Branner, Kim, 2013. "Development of an anisotropic beam finite element for composite wind turbine blades in multibody system," Renewable Energy, Elsevier, vol. 59(C), pages 172-183.
    5. Mo, Wenwei & Li, Deyuan & Wang, Xianneng & Zhong, Cantang, 2015. "Aeroelastic coupling analysis of the flexible blade of a wind turbine," Energy, Elsevier, vol. 89(C), pages 1001-1009.
    6. Zhao, Xueyong & Maißer, Peter & Wu, Jingyan, 2007. "A new multibody modelling methodology for wind turbine structures using a cardanic joint beam element," Renewable Energy, Elsevier, vol. 32(3), pages 532-546.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaewniam, Panida & Cao, Maosen & Alkayem, Nizar Faisal & Li, Dayang & Manoach, Emil, 2022. "Recent advances in damage detection of wind turbine blades: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebrahimi, Abbas & Sekandari, Mahmood, 2018. "Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes," Energy, Elsevier, vol. 145(C), pages 261-275.
    2. Shah, Owaisur Rahman & Tarfaoui, Mostapha, 2016. "The identification of structurally sensitive zones subject to failure in a wind turbine blade using nodal displacement based finite element sub-modeling," Renewable Energy, Elsevier, vol. 87(P1), pages 168-181.
    3. Wang, H. & Ke, S.T. & Wang, T.G. & Zhu, S.Y., 2020. "Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects," Renewable Energy, Elsevier, vol. 153(C), pages 740-758.
    4. Tang, Di & Bao, Shiyi & Luo, Lijia & Mao, Jianfeng & Lv, Binbin & Guo, Hongtao, 2017. "Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method," Energy, Elsevier, vol. 141(C), pages 2300-2313.
    5. Meng, Hang & Lien, Fue-Sang & Yee, Eugene & Shen, Jingfang, 2020. "Modelling of anisotropic beam for rotating composite wind turbine blade by using finite-difference time-domain (FDTD) method," Renewable Energy, Elsevier, vol. 162(C), pages 2361-2379.
    6. Moura Carneiro, F.O. & Barbosa Rocha, H.H. & Costa Rocha, P.A., 2013. "Investigation of possible societal risk associated with wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 30-36.
    7. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    8. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    9. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.
    10. Chandel, S.S. & Ramasamy, P. & Murthy, K.S.R, 2014. "Wind power potential assessment of 12 locations in western Himalayan region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 530-545.
    11. Eissa (SIEEE), M.M., 2015. "Protection techniques with renewable resources and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1645-1667.
    12. K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
    13. Kandi, Ali & Meirelles, Gustavo & Brentan, Bruno, 2022. "Employing demand prediction in pump as turbine plant design regarding energy recovery enhancement," Renewable Energy, Elsevier, vol. 187(C), pages 223-236.
    14. Pavese, Christian & Kim, Taeseong & Murcia, Juan Pablo, 2017. "Design of a wind turbine swept blade through extensive load analysis," Renewable Energy, Elsevier, vol. 102(PA), pages 21-34.
    15. Breen, Benjamin & Vega, Amaya & Feo-Valero, Maria, 2015. "An empirical analysis of mode and route choice for international freight transport in Ireland," Working Papers 262587, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    16. Chen, Peng & Han, Dezhi, 2022. "Effective wind speed estimation study of the wind turbine based on deep learning," Energy, Elsevier, vol. 247(C).
    17. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    18. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    19. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    20. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:358-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.