IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v239y2025ics0960148124021773.html
   My bibliography  Save this article

Aeroelastic flutter correlation analysis and structure optimization of wind turbine blades under multiple operating conditions based on aerodynamic damping

Author

Listed:
  • Tang, Xinzi
  • Li, Kexiang
  • Peng, Ruitao
  • Hu, Congfang
  • Chen, Rui

Abstract

Aeroelastic stability is a complex and hot issue which still poses a great challenge to blade design for large wind turbines. The difficulty of aeroelastic design for wind turbine blades lies in the unknown underlying correlation between various design variables and diverse flutter modes under multiple operating conditions. In this paper, an aeroelastic analysis model for wind turbine blade is established to investigate the flutter characteristics of large wind turbine blades, based on the composite laminated plates theory, the aerodynamic calculation model, and the Euler-Bernoulli beam model. The main modal aerodynamic damping ratios under normal and parked conditions are calculated. The correlation between the layer design parameters and the flutter characteristics is quantitated and the significant parameters are recognized. The influence of the cap-web configuration of the blade on the flutter characteristics is quantified using the univariate analysis and the multi-factor-orthogonal test method. The trade-off relationship of the aerodynamic damping characteristics under two operating conditions is identified. The aeroelastic analysis model is embedded into the multi-objective aeroelastic optimization. Three aeroelastic optimization schemes are proposed, compared, and validated in the case study. Results show that, compared with the original scheme, the first-order flap-wise aerodynamic damping at the rated condition and the first order edgewise aerodynamic damping at the strong wind condition are increased by 17.839 % and 12.387 % respectively. The maximum displacement amplitudes at the rated condition and at the strong wind condition decrease by 32.13 % and 20.34 % respectively. The proposed collaborative optimization design method demonstrates strong effectiveness in enhancement of aeroelastic stability, which provides an important reference for the aeroelastic design of wind turbines.

Suggested Citation

  • Tang, Xinzi & Li, Kexiang & Peng, Ruitao & Hu, Congfang & Chen, Rui, 2025. "Aeroelastic flutter correlation analysis and structure optimization of wind turbine blades under multiple operating conditions based on aerodynamic damping," Renewable Energy, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021773
    DOI: 10.1016/j.renene.2024.122109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124021773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jin & Zhang, Lei & Li, Xue & Li, Shuang & Yang, Ke, 2020. "A study of dynamic response of a wind turbine blade based on the multi-body dynamics method," Renewable Energy, Elsevier, vol. 155(C), pages 358-368.
    2. Shen, Zhuang & Gong, Shuguang & Xie, Guilan & Lu, Haishan & Guo, Weiyu, 2024. "Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine," Energy, Elsevier, vol. 290(C).
    3. Zhang, Zhihao & Kuang, Limin & Han, Zhaolong & Zhou, Dai & Zhao, Yongsheng & Bao, Yan & Duan, Lei & Tu, Jiahuang & Chen, Yaoran & Chen, Mingsheng, 2023. "Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines," Energy, Elsevier, vol. 281(C).
    4. Ha, Sung Kyu & Hayat, Khazar & Xu, Lei, 2014. "Effect of shallow-angled skins on the structural performance of the large-scale wind turbine blade," Renewable Energy, Elsevier, vol. 71(C), pages 100-112.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shine Win Naung & Mohammad Rahmati & Htet Shine, 2025. "High-Fidelity Aeroelastic Analysis of a Wind Turbine Using a Nonlinear Frequency-Domain Solution Method," Energies, MDPI, vol. 18(5), pages 1-20, February.
    2. RahnamayBahambary, Khashayar & Kavian-Nezhad, Mohammad Reza & Komrakova, Alexandra & Fleck, Brian A., 2024. "A numerical study of bio-inspired wingtip modifications of modern wind turbines," Energy, Elsevier, vol. 292(C).
    3. Wendong Zhang & Yang Cao & Zhong Qian & Jian Wang & Yixian Zhu & Yanan Yang & Yujie Wang & Guoqing Wu, 2024. "Research on Aerodynamic Performance of Asynchronous-Hybrid Dual-Rotor Vertical-Axis Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-22, September.
    4. Zhang, Xu & Zhang, Lijun & Wang, Kaifei & Cui, Xudong & Jing, Zhengjun & Liu, Ziyi & Liu, Shibo & Lu, Jiahui & Zhang, Yifan & Li, Jiaxuan, 2025. "Bionic inspired flutter suppression method for offshore ultra-long wind turbine blades," Renewable Energy, Elsevier, vol. 239(C).
    5. Gao, Rongzhen & Yang, Junwei & Yang, Hua & Wang, Xiangjun, 2023. "Wind-tunnel experimental study on aeroelastic response of flexible wind turbine blades under different wind conditions," Renewable Energy, Elsevier, vol. 219(P2).
    6. Sun, Yukun & Qian, Yaoru & Wang, Tongguang & Wang, Long & Zhu, Chengyong & Gao, Yang, 2025. "Quantitative impact of combining blowing and suction flow control on a floating offshore wind turbine aerodynamic performance under the surge motion," Renewable Energy, Elsevier, vol. 238(C).
    7. Shen, Zhuang & Gong, Shuguang & Zu, Hongxiao & Guo, Weiyu, 2024. "Multi-objective optimization study on the performance of double Darrieus hybrid vertical axis wind turbine based on DOE-RSM and MOPSO-MODM," Energy, Elsevier, vol. 299(C).
    8. Shen, Zhuang & Gong, Shuguang & Xie, Guilan & Lu, Haishan & Guo, Weiyu, 2024. "Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine," Energy, Elsevier, vol. 290(C).
    9. Meng, Hang & Jin, Danyang & Li, Li & Liu, Yongqian, 2022. "Analytical and numerical study on centrifugal stiffening effect for large rotating wind turbine blade based on NREL 5 MW and WindPACT 1.5 MW models," Renewable Energy, Elsevier, vol. 183(C), pages 321-329.
    10. Bayu K. Wardhana & Byeongrog Shin, 2025. "Numerical Study of the Effect of Winglets with Multiple Sweep Angles on Wind Turbine Blade Performance," Energies, MDPI, vol. 18(5), pages 1-19, March.
    11. Sun, Yukun & Qian, Yaoru & Gao, Yang & Wang, Tongguang & Wang, Long, 2024. "Stall control on the wind turbine airfoil via the single and dual-channel of combining bowing and suction technique," Energy, Elsevier, vol. 290(C).
    12. Lapa, Gabriel Vicentin Pereira & Gay Neto, Alfredo & Franzini, Guilherme Rosa, 2023. "Effects of blade torsion on IEA 15MW turbine rotor operation," Renewable Energy, Elsevier, vol. 219(P2).
    13. Sun, Yukun & Qian, Yaoru & Wang, Tongguang & Wang, Long & Zhu, Chengyong & Gao, Yang, 2024. "Investigation of the wind turbine aerodynamic performance via the combining blowing and suction flow control," Energy, Elsevier, vol. 307(C).
    14. Kaewniam, Panida & Cao, Maosen & Alkayem, Nizar Faisal & Li, Dayang & Manoach, Emil, 2022. "Recent advances in damage detection of wind turbine blades: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:239:y:2025:i:c:s0960148124021773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.